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Abstract This paper studies the impact of lightweight face models on real appli-
cations. Lightweight architectures proposed for face recognition are analyzed and
evaluated on different scenarios. In particular, we evaluate the performance of five
recent lightweight architectures on five face recognition scenarios: image and video
based face recognition, cross-factor and heterogeneous face recognition, as well as
active authentication on mobile devices. In addition, we show the lacks of using
common lightweight models unchanged for specific face recognition tasks, by as-
sessing the performance of the original lightweight versions of the lightweight face
models considered in our study. We also show that the inference time on differ-
ent devices and the computational requirements of the lightweight architectures
allows their use on real-time applications or computationally limited platforms.
In summary, this paper can serve as a baseline in order to select lightweight face
architectures depending on the practical application at hand. Besides, it provides
some insights about the remaining challenges and possible future research topics.

Keywords lightweight architectures · face recognition · efficient face models

1 Introduction

Face recognition (FR) is an active research topic in computer vision and image un-
derstanding. It is one of the most used and extended biometric techniques, mainly
due to the fact that the face is the most common characteristic used by humans
for recognition [48]. Figure 1 shows the whole pipeline of an automatic face recog-
nition system consisting on two main modules: preprocessing and recognition. In
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the preprocessing step the face in an image is detected and then aligned. After-
wards, a feature extractor is used to obtain a face representation and the system
compares the extracted features with the gallery faces to do face matching. There
are two different tasks in face matching: face verification and face identification.
Face verification computes one-to-one similarity between the gallery and probe
face descriptors, to determine whether they belong or not to the same subject.
On the other hand, face identification is a one-to-many matching to determine the
specific identity of a probe face descriptor. Many methods have been proposed to
address each module including face preprocessing [7,16,62,111] and recognition
[2,6,27]. In the remainder of this paper we only focus on the recognition module
including face verification and identification tasks.

Fig. 1: Pipeline of an automatic face recognition system including preprocessing
and recognition modules.

The demands of FR are also growing quickly in recent years due to its extensive
applications in video surveillance, law enforcement, access control, marketing and
so forth. In practice, however, unconstrained face recognition is affected by many
factors such as pose variation, illumination changes, low resolution, and motion
blur, resulting in low recognition accuracies. Traditional algorithms, such as the
Eigenfaces [88], Fisherfaces [4], Local Binary Patterns [2], Fisher Vector based [65,
72], etc., still suffer from limitations on robustness against these complex nonlinear
facial appearance variations.

In the last decade, deep neural networks through multiple layers and massive
training data, have reshaped the research landscape of face recognition [27,90,92],
due to their increased effectiveness, ability and generalization to learn the essen-
tial features of data by constructing powerful representations from the low-level
pixels. Previous work such as DeepFace [82], FaceNet [77] and VGG-Face [73] first
explored the advantages of stacking up convolutional layers in depth and width.
Residual neural networks [6,32,95] became very popular due to their ability to
construct extremely deep networks and to prevent data degradation by adding the
original residual unit input to the computed weights in the subsequent layers of
the unit, resulting in a better recognition accuracy. At the same time, the com-
putational complexity and resource consumption (e.g. large memory and powerful
GPUs) of these networks continue to increase, which make them unfeasible to de-
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ploy in real-time applications or on resource-limited devices such as mobile and
embedded systems.

Therefore, designing efficient deep networks without significantly lowering the
accuracy has become a hot topic within the deep learning community. To deal with
this issue, many efforts aiming at mitigate the computational complexity challenge
have been made for general visual recognition tasks, including the introduction of
MobileNets [35,36,76], SqueezeNet [45], ShuffleNets [61,113], CondenseNet [39],
EfficientNet [84] and VarGNet [112] which dramatically reduce memory require-
ments (layers and number of parameters) and computational complexity by fac-
torizing standard convolutions, introducing bottleneck convolutions, and adjusting
parameters such as model width, depth, and input resolution. Other approaches
have tried to optimize existing networks by using binarization [12,13,74] or prun-
ing techniques [30,33].

Recently, several attempts to build small and efficient neural networks specifi-
cally tailored for face recognition have emerged, reaching high levels of accuracy [9,
63,99,103]. Some authors have proposed to learn a compact embedding on large-
scale face data while maintaining millions of parameters [99]. Others [9,63,103]
have been inspired on existing lightweight mobile architectures but introducing
significant modifications in order to improve their discriminative and generaliza-
tion ability for face recognition. These latest face models aim at extreme model
compactness and computation efficiency, overcoming the weaknesses of common
mobile networks by improving their accuracy on this specific task. However, exist-
ing lightweight face networks have been trained and tested with different exper-
imental settings and datasets, which might result in unfair comparisons, making
it difficult to understand how different these models are. Moreover, very limited
effort has been made towards benchmarking this kind of models on specific face
recognition scenarios that are still challenging for deep learning such as large-scale
image FR and video FR, and heterogeneous FR.

This paper aims at benchmarking lightweight face architectures that have been
recently introduced to improve their discriminative ability in face recognition by
conducting a systematic evaluation on different scenarios, which include many
specific issues and challenges that must be addressed in facial recognition. Specif-
ically, we evaluate the performance of the selected lightweight architectures on
images and videos, cross-factor and heterogeneous face recognition, as well as on
active authentication on mobile devices. In addition, we compare them with re-
spect to their original lightweight models in order to analyze their breakthrough
and impact for face recognition applications. On the other hand, although different
lightweight face architectures have been proposed in the literature, they have not
been compared each other regarding their inference time on different devices and
computational requirements. We conduct here this analysis and we also compare
them with some state-of-the-art face recognition models, in order to demonstrate
their feasibility for real-time applications and computationally limited platforms.
To the best of our knowledge, this is the first study that provides an extensive
performance comparison of lightweight deep face networks on specific FR scenar-
ios. There is a large number of papers in the literature that focus on the behavior
of very deep CNN models on face recognition [3,27,62,79,92,117], where existing
lightweight face architectures are not widely addressed.

In summary, in this paper we show that:
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– Lightweight deep face networks can be applied to specific face recognition sce-
narios, that have not been fully covered in the literature, and this deserves
further attention.

– It is possible to enhance the discriminative ability of existing lightweight ar-
chitectures, achieving a competitive high-accuracy while preserving their small
computational cost.

– Even though the generalization ability of lightweight face models on different
face recognition scenarios is good, there are still some challenges such as large-
scale face recognition, low-resolution and facial sketch recognition, that need
to be addressed.

– The efficiency of lightweight face models makes it possible to implement face
recognition on limited computational platforms such as mobile and embedded
systems.

This work serves as a baseline for future research on different face recognition
tasks by using lightweight deep networks. The rest of this paper is structured as
follows. In Section 2 we review main efficient deep neural networks in the literature,
focusing on those proposed for the specific case of face recognition. Section 3 briefly
introduces the lightweight face architectures used for our study. Experimental
results on different face recognition scenarios are presented in Section 4. In Section
5 we present our final remarks and discuss some remaining challenges in face
recognition using lightweight deep networks. Finally, Section 6 concludes this work.

2 Efficient deep neural networks architectures

Designing deep neural network architectures for an optimal trade-off between ac-
curacy and efficiency has been an active research area in recent years [11,30] given
the great demand for the deployment of deep CNN in embedded and mobile de-
vices. Researchers have varied ways to speed up the network architectures which
can be categorized into: 1) compressed networks, 2) efficient building block design,
and 3) efficient deep networks tailored to face recognition.

2.1 Compressed networks

There are several new advances in compressing and accelerating deep CNNs in
order to optimize the execution and storage for a given network [11]. For example,
pruning methods [33,52,58] have been used to remove unimportant or unnecessary
parameters in deep networks and obtain their lightweight form with comparable
accuracy. In this way, the parameters require less disk storage and the computa-
tional complexity of the networks is reduced.

Low-rank decomposition has been proposed to approximate the weight matrix
in neural networks with a low-rank matrix but in a more computationally efficient
way. Techniques like singular value decomposition [18,114], block-term decompo-
sition [91] and CP-decomposition [50] have been employed to impose low-rank
constraints according to in how many components the filters are decomposed.
Although these methods achieve high compression levels, notable speed-ups are
not obtained since they work well on fully-connected layers, and computationally-
intensive operations in CNN mainly come from convolutional layers.
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On the other hand, quantizing real-valued weights and activations into bi-
nary/ternary weights have been used to dramatically optimize the network’s stor-
age footprint [13,38,51]. Using binary quantization, the network can be compressed
by a factor of about 32 compared with 32-bit floating-point networks. Besides, by
binarizing both weights and activations, the network computations can be con-
ducted using only fixed-point operations and the storage is also reduced [12,74].
However, these low-bit representations usually come with a loss in accuracy.

Knowledge distillation technique has been adopted in many works [75,34,107]
to compress a complex model into a simpler model that is much easier to deploy.
This approach is different from the network compression or acceleration methods
since it trains a student network using a teacher network, and the student network
can be designed with a different network architecture. Its basic idea is to transfer
the dark knowledge from a larger teacher network to a small student network
by learning the class distributions provided by the teacher via softened softmax.
Thus, the key component of knowledge distillation is the trade-off between speed
and performance that can achieve a higher accuracy than training merely through
the class labels.

2.2 Efficient building block design

Another line of inquiry to speed up a network is to design a more efficient but
low-cost architecture. By integrating small modules or compact blocks we can
reduce the number of weights, the memory usage and the computational cost for
the inference stage. In [32,45,54,81] the amount of parameters and computational
cost is reduced by using 1×1 convolutions and decreasing filter sizes, which enhance
the network capacity while keeping the overall computational complexity small.

Depth-wise separable convolutions were introduced in MobileNetV1 [36] as an
efficient replacement for traditional convolution layers. In addition, MobileNetV2
[76] introduced inverted residuals and linear bottleneck structure in order to make
even more efficient layer structures by leveraging the low-rank nature of the prob-
lem. Built upon the MobileNetV2 structure, MnasNet [83] introduced lightweight
attention modules based on squeeze and excitation into the bottleneck structure.
Lastly, MobileNetV3 [35] uses a combination of these layers as building blocks in
order to build most effective models.

On the other hand, ShuffleNets [61,113] utilize group convolution and channel
shuffle operations to increase the information change within multiple groups. More-
over, SeesawNet [109] provides a novel search space for designing basic blocks by
using uneven point-wise group convolution without any channel shuffle operation,
which obtains a better trade-off between representation capability and computa-
tional cost. VarGNet [112] proposes a novel network design mechanism by fixing
the number of channels in a group convolution for efficient embedded computing.

In the past few years, network architecture search (NAS) has shown itself
to be a very powerful tool for discovering and optimizing network architectures.
However, NAS algorithms require a lot of training time and computing capability.
Other methods such as DARTS [55], SNAS [100] and ProxylessNAS [5] have also
been developed to accelerate the search process by reducing search space and
changing search strategies, at cost of dropping the accuracy.
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2.3 Efficient deep networks tailored to face recognition

Developing very efficient and lightweight networks for the specific case of face
recognition is a topic that has gained attention from the research community in
recent years. FaceNet [77] is one of the first attempts to directly learn an Euclidean
embedding to simplify face verification, face recognition, and face clustering tasks.
The proposal uses a deep convolutional network trained to optimize the embed-
ding itself by minimizing intra-class and maximizing inter-class squared L2 dis-
tances, rather than an intermediate bottleneck layer as in previous deep learning
approaches. The benefit of the proposal is a much greater representational effi-
ciency resulting on 128-bytes per face; however the computational complexity of
this approach makes it impossible to use on low-compute devices. A Light CNN
framework for face representation was proposed in [99], which introduces a Max-
Feature-Map (MFM) activation function in order to reduce the number of weights
and select the less noisy ones from the input. As result, the learned single model
with a 256-D representation achieves state-of-the-art results on five face recogni-
tion benchmarks. The proposed Light CNN framework leads to better performance
in terms of speed and storage space compared with state-of-the-art face models;
however, it is not so efficient compared with mobile networks (it has 12.6 million
parameters and about 3.9G FLOPs).

More recent face models have been inspired on existing lightweight mobile net-
works but introducing some modifications in order to improve their performance
on face recognition. MobileFaceNet [9] and ShuffleFaceNet [63], which are based on
MobileNetV2 [76] and ShuffleNetV2 [61], respectively, replace the Global Average
Pooling layer for a Global Depth-wise Convolution layer, and use the Parametric
Rectified Linear Unit (PReLU) activation function instead of the Rectified Lin-
ear Unit (ReLU) function. Similarly, MobiFace [22] network was proposed aiming
at maximizing the information embedded in final feature vector while maintain-
ing the low computational cost by adopting the Residual Bottleneck block with
expansion layers as the building block. It adopts a fast downsampling strategy
by quickly reducing the spatial dimensions of layers/blocks with the input size
larger than 14×14, uses PReLU non-linear activation function over ReLU function
and uses the Fully Connected (FC) layer in the last stage of embedding process.
VarGFaceNet [103] improves the discriminative ability of VarGNet [112] by using
an efficient variable group convolutional network for lightweight face recognition.
Moreover, to improve the interpretation ability of this lightweight network, an
equivalence of angular distillation loss is employed as objective function and a re-
cursive knowledge distillation strategy is introduced. Inspired by different network
design strategies such as using seesaw block, squeeze-and-excitation optimization
and Swish non-linear activation function, SeesawFaceNets [110] achieve a com-
petitive performance in terms of accuracy and computation cost against both
lightweight and large-scale deep face recognition networks.

Note that techniques such as pruning [33,52,58], low-bit quantization [74,
38,51], and knowledge distillation are able to improve the efficiency of these
lightweight networks additionally, but these are not included in the scope of this
paper. Given the variety of existing lightweight face architectures, training datasets
and test benchmarks including specific face recognition problems, it is quite dif-
ficult to select appropriate face models to conduct face recognition tasks. In this
study, we aim at benchmarking the performance of different lightweight face archi-
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tectures in specific face recognition problems, as well as assessing to their compu-
tational complexity to deploy in real-time applications or resource-limited devices.

3 Lightweight Face Architectures for Face Recognition

In this section, we describe in detail the face CNN models considered in our study.
Specifically, we select three recent lightweight architectures (VarGFaceNet [103],
MobileFaceNet [9] and ShuffleFaceNet [63]) tailored for face recognition which are
based on common mobile networks. In addition, we modify the MobileNetV1 [36]
and the ProxylessNAS [5] taking into account some of the strategies used in these
lightweight face models to improve their discriminative ability on face recognition
and additionally, enlarge our benchmark study.

3.1 VarGFaceNet architecture

VarGFaceNet [103] consists of an efficient variable group convolutional network
based on VarGNet [112] for lightweight face recognition. Different from the blocks
in VarGNet, it adds squeeze and excitation (SE) block [37] and employes PReLU
activation function instead of ReLU to increase the discriminative ability of their
blocks. Moreover, VarGFaceNet removes the downsample process at the start of
network to preserve more information and applies variable group convolution after
last convolution to shrink the feature tensor to 1× 1× 512 before FC layer. Table
1 shows the overall architecture of the lightweight network VarGFaceNet. As we
can see, 3 × 3 Convolution with stride 1 is used at the start of network instead of
3 × 3 Convolution with stride 2 as in VarGNet, which reserves the discriminative
ability in lightweight networks.

Table 1: VarGFaceNet architecture.

Name Kernel/Stride Output Size

Image - 112 × 112 × 3
Conv 3 × 3/1 112 × 112 × 40
Head Block - /2 56 × 56 × 40
Stage2 - /2 28 × 28 × 80

- /1 28 × 28 × 80
Stage3 - /2 14 × 14 × 160

- /1 14 × 14 × 160
Stage4 - /2 7 × 7 × 320

- /1 7 × 7 × 320
Conv5 1 × 1/1 7 × 7 × 1024
Group Conv 7 × 7/1 1 × 1 × 1024
Pointwise Conv 1 × 1/1 1 × 1 × 512
FC - 512
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3.2 MobileFaceNet architecture

MobileFaceNet [9] was specifically tailored for high-accuracy real-time face verifi-
cation on mobile and embedded devices. It uses the residual bottlenecks proposed
in MobileNetV2 [76] as their main building blocks. The detailed structure of Mo-
bileFaceNet architecture is shown in Table 2. Each line describes a sequence of
operators, repeated n times. All layers in the same sequence have the same output
channels. The first layer of each sequence has a specific stride and all the others
use stride equal to 1. All spatial convolutions in the bottlenecks use 3 × 3 kernels
and the expansion factor t is always applied to the input size. Particularly, expan-
sion factors for bottlenecks in MobileFaceNet architecture are much smaller than
those in MobileNetV2. Also, a fast downsampling strategy at the beginning of the
network and an early dimensional reduction strategy at the last several convolu-
tional layers are employed. Finally, a Global Depth-wise Convolution (GDC) layer
followed by a linear 1 × 1 convolution layer is used instead of a Global Average
Pooling layer used in MobileNetV2 as the feature output layer. Moreover, PReLU
function is applied as the non-linearity instead of ReLU, which has shown to be
better for face recognition.

Table 2: MobileFaceNet architecture.

Name Kernel/Stride t n Output Size

Image - - - 112 × 112 × 3
Conv 3 × 3/2 - 1 56 × 56 × 64
DWConv 3 × 3/1 - 1 56 × 56 × 64
Bottleneck - 2 5 28 × 28 × 64
Bottleneck - 4 1 14 × 14 × 128
Bottleneck - 2 6 14 × 14 × 128
Bottleneck - 4 1 7 × 7 × 128
Bottleneck - 2 2 7 × 7 × 128
Conv 1 × 1/1 - 1 7 × 7 × 512
GDConv 7 × 7/1 - 1 1 × 1 × 512
LinearConv 1 × 1/1 - 1 1 × 1 × 128

3.3 ShuffleFaceNet architecture

ShuffleFaceNet [63] extends the extremely efficient network ShuffleNetV2 [61] to
the domain of face recognition. In Table 3 is presented the detailed structure
of ShuffleFaceNet architecture, where the building blocks in Stages 2-4 consist
of DenseNet blocks [40] and the number of channels in each block is scaled to
generate four networks of different complexities, denoted as 0.5×, 1×, 1.5× and
2×. Different from ShuffleNetV2, a fast downsampling strategy is applied at the
beginning of the ShuffleFaceNet architecture and a linear 1 × 1 convolution layer
following a GDC layer is used to output the feature vector. Moreover, in order to
deal with non-linearities, PReLU function is employed instead of ReLU function,
which increases the discriminative ability of the network.
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Table 3: ShuffleFaceNet architecture for four different levels of complexity.

Name Kernel/Stride Output Size Output Channels

0.5× 1× 1.5× 2×
Image - 112 × 112 3 3 3 3
Conv1 3 × 3/2 56 × 56 24 24 24 24
Stage2 - 28 × 28 48 116 176 244
Stage3 - 14 × 14 96 232 352 488
Stage4 - 7 × 7 192 464 704 976
Conv5 1 × 1/1 7 × 7 1024 1024 1024 2048
GDConv 7 × 7/1 1 × 1 1024 1024 1024 2048
LinearConv 1 × 1/1 1 × 1 128 128 128 128

Although it is known that the higher the complexity, the higher the accuracy,
in [63] it was demonstrated that ShuffleFaceNet 1.5× presents the best speed-
accuracy trade-off [63]. Therefore, we will use this model configuration for our
study and we will refer to it as ShuffleFaceNet in the remaining of our work.

3.4 MobileFaceNetV1 architecture

Inspired on some of the strategies that have been introduced in the previous
lightweight face architectures, we have decided to modify the MobileNetV1 [36]
in order to enhance its discriminative ability for the specific case of face recogni-
tion and enlarge our study about this kind of networks. As result, the proposed
architecture, namely MobileFaceNetV1, is built on top of the MobileNetV1 which
utilizes 3 × 3 depth-wise separable convolutions to greatly reduce computational
requirements and all layers are followed by a batch-norm [47]. As particularity,
we adopt a fast downsampling strategy at the beginning of the network and use
PReLU as non-linearity activation function instead of ReLU. Moreover, the fea-
ture output is given by a linear 1 × 1 convolution layer following a GDC layer. In
Table 4 we present the overall architecture of proposed MobileFaceNetV1.

3.5 ProxylessFaceNAS architecture

We propose a modified version of the ProxylessNAS network [5]. The proposed
ProxylessFaceNAS is based on the efficient CPU model found by ProxylessNAS
which uses MobileNetV2 [76] as the backbone to build the architecture space. For
the specific case of face recognition, we use PReLU to take place of ReLU as the
activation function and replace the last global average pooling layer with a GDC
layer followed by a linear 1 × 1 convolution layer. Table 5 presents the detailed
architecture of ProxylesFaceNAS. MBConv3 and MBConv6 denote mobile inverted
bottleneck convolution layer with an expansion ratio of 3 and 6, respectively.
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Table 4: MobileFaceNetV1 architecture.

Name Kernel/Stride Output Size

Image - 112 × 112 × 3
Conv 3 × 3/2 112 × 112 × 32
Conv dw 3 × 3/1 112 × 112 × 32
Conv 1 × 1/1 112 × 112 × 64
Conv dw 3 × 3/2 56 × 56 × 64
Conv 1 × 1/1 56 × 56 × 128
Conv dw 3 × 3/1 56 × 56 × 128
Conv 1 × 1/1 56 × 56 × 128
Conv dw 3 × 3/2 28 × 28 × 128
Conv 1 × 1/1 28 × 28 × 256
Conv dw 3 × 3/1 28 × 28 × 256
Conv 1 × 1/1 28 × 28 × 256
Conv dw 3 × 3/2 14 × 14 × 256
Conv 1 × 1/1 14 × 14 × 512
Conv dw 3 × 3/1 14 × 14 × 512
Conv 1 × 1/1 14 × 14 × 512
Conv dw 3 × 3/2 7 × 7 × 512
Conv 1 × 1/1 7 × 7 × 1024
Conv dw 3 × 3/2 7 × 7 × 1024
Conv 1 × 1/1 7 × 7 × 1024
GDConv 7 × 7/1 1 × 1 × 1024
LinearConv 1 × 1/1 1 × 1 × 128

Table 5: ProxylessFaceNAS architecture.

Name Kernel/Stride Output Size

Image - 112 × 112 × 3
Conv 3 × 3/1 112 × 112 × 40
MBConv1 3 × 3/1 112 × 112 × 24
MBConv6 3 × 3/1 56 × 56 × 32
MBConv3 3 × 3/1 56 × 56 × 32
MBConv3 3 × 3/1 56 × 56 × 32
MBConv3 3 × 3/1 56 × 56 × 32
MBConv6 3 × 3/1 28 × 28 × 48
MBConv3 3 × 3/1 28 × 28 × 48
MBConv3 3 × 3/1 28 × 28 × 48
MBConv3 5 × 5/1 28 × 28 × 48
MBConv6 3 × 3/1 14 × 14 × 88
MBConv3 3 × 3/1 14 × 14 × 88
MBConv6 5 × 5/2 14 × 14 × 104
MBConv3 3 × 3/1 14 × 14 × 104
MBConv3 3 × 3/1 14 × 14 × 104
MBConv3 3 × 3/1 14 × 14 × 104
MBConv6 5 × 5/1 7 × 7 × 216
MBConv3 5 × 5/1 7 × 7 × 216
MBConv3 5 × 5/1 7 × 7 × 216
MBConv3 3 × 3/1 7 × 7 × 216
MBConv6 5 × 5/1 7 × 7 × 360
GDConv 7 × 7/1 1 × 1 × 1024
LinearConv 1 × 1/1 1 × 1 × 128
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4 Experiments

In this section, we evaluate the selected lightweight face architectures on several
benchmarks, which cover specific scenarios of face recognition (FR) to get approxi-
mate real applications. According to their characteristics, we divide these scenarios
into five categories: image FR, video FR, cross-factor FR, heterogeneous FR, and
active authentication on mobile devices. First, we describe the implementation
details. Then, in order to demonstrate the effectiveness of the lightweight face
models, we compare them with state-of-the-art methods for the five FR scenarios.
After that, we analyze the advantages of extending common lightweight architec-
tures to the case of face recognition by comparing the lightweight face models with
their original versions. Finally, we show the great computational efficiency of these
lightweight models compared with state-of-the-art deep face models.

4.1 Implementation details

4.1.1 Datasets

We employ the MS1M-RetinaFace dataset [15] which is a semi-automatic refined
version of the MS1M dataset [28], containing 5.1M images collected from 93K
identities. All face images in this dataset are detected and aligned by using five
facial landmarks predicted from RetinaFace [16] and then, resized to 112×112.
The template is normalized into [1, 1] by subtracting the mean pixel value, i.e.
127.5, and then divided by 128. In addition, we use LFW [41], CFP-FP [78] and
AgeDB-30 [69] as validation datasets to check the improvement from different
settings.

As given in Table 6, we used different benchmarks to test the effectiveness
of lightweight face models on the defined FR scenarios, that show their main
caracteristics. Besides, efficient face verification image datasets (e.g. LFW [41] and
CFP-FF [78]), we also report the performance of the lightweight networks on large-
scale image datasets such as MegaFace [49], IJB-B [96], IJB-C [67] and Trillion-
Pairs [1]. Moreover, we extensively test on video datasets (e.g. YTF [97], COX
Face [43] and IQIYI-Video [15]) and cross-pose (e.g. CFP-FP [78] and CPLFW
[115]) and cross-age (e.g. AgeDB-30 [69] and CALFW [116]) datasets. In addition,
we explore low-resolution (e.g. SCface [26]) and photo-sketch (e.g. UoM-SGFS
[24]) datasets to assess the performance on heterogeneous domains. Finally, we
use UMDAA-01 dataset [23] for face-based continuous authentication.

4.1.2 Experimental settings

For training the lightweight models, we adopt Stochastic Gradient Descent (SGD)
optimizer with the batch size of 128/256/512 due to limited GPU memory. Specif-
ically, we use two Nvidia GeForce GTX 1080Ti (11GB) GPUs. The learning rate is
initialized to 0.1 and decreased by a factor of 10 periodically at 100K, 140K, 160K
iterations. The total iteration step is set as 200K. The momentum parameter is
set to 0.9 and weight decay at 5e-4. The parameter initialization for convolution
is Xavier with random sampling from a Gaussian normal distribution. All of the
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Table 6: Benchmarks used for testing on different face recognition scenarios.

Database # imgs/videos # subjects Task Metrics Key Features

Image FR

LFW [41] 13,233/- 5,749 1:1 Acc unconstrained images
CFP-FF [78] 5,000/- 500 1:1 Acc, EER, AUC unconstrained images

MegaFace [49] 1M/- 690,572
1:1 VR@FAR large-scale,
1:N Rank-1 1M of distractors

IJB-B [96] 21.8K/7,011 1,845
1:1 TAR@FAR large-scale,
1:N Rank-1, Rank-5, Id@FPIR full pose variation

IJB-C [67] 31.3K/11,779 3,531
1:1 TAR@FAR large-scale,
1:N Rank-1, Rank-5, Id@FPIR full pose variation

DeepGlint-Image [15] 1.8M/- 5.7K 1:1 TPR@FPR
large-scale,

trillion-level pairs

Video FR

YTF [97] /-3,425 1,595 1:1
Acc, EER, AUC,

video vs. video,
TAR@FAR

1:N DIR(Rank-1)@FAR video vs. image

COX Face [43] 1,000/3,000 1,000 1:N Rank-1
video vs. video,
video vs. image

IQIYI-Video [15] 6.3M/200K 4,934 1:1 TPR@FPR
large-scale,

billion-level pairs

Cross-Factor FR

CFP-FP [78] 2,000/- 500 1:1 Acc, EER, AUC cross-pose
AgeDB [69] 16,488/- 568 1:1 Acc cross-age
CPLFW [115] 11,652/- 3,968 1:1 Acc cross-pose
CALFW [116] 12,174/- 4,025 1:1 Acc cross-age

Heterogeneous FR

SCface [26] 2,250/- 150 1:N Rank-1 high vs. low resolution
UoM-SGFS [24] 1,800/- 600 1:N Rank-N sketch vs. photo

Active Authentication on mobile devices

UMDAA-01 [23] -/750 50 1:N Rank-1 lighting variations

lightweight face models in this work are trained under this same general setting
from scratch and implemented on the MxNet framework [10].

In the case of the loss function, we use the best available option for each model.
In [63] the results of ShuffleFaceNet for various loss functions are reported and Ar-
cFace exhibit the best results. Similarly, VargFaceNet and MobileFaceNet, were
originally designed with ArcFace as the best option in [103] and [9] respectively.
In the three cases ArcFace [14] loss function was used with an angular margin
m = 0.5. For the proposed MobileFaceNetV1 and ProxylessFaceNAS, we explore
different loss functions (SoftMax, CosFace [89] and ArcFace [14]), and evaluate
their performance on the validation datasets, achieving CosFace the highest verifi-
cation accuracy. Thus, both MobileFaceNetV1 and ProxylessFaceNAS are trained
by CosFace loss function.

During testing, in order to generate the normalised face crops (112×112), we
follow the same preprocessing adopted with the training data by using RetinaFace
detector [16]. Moreover, we only keep the feature embedding of each network with-
out the fully connected layer and extract the corresponding features for each nor-
malised face.
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4.2 Comparison with state-of-the-art methods

In order to asses the effectiveness of the lightweight face models, we conducted
an extensive experimental evaluation on several face datasets representing the
different FR scenarios selected for our study. It is important to note that we do
not re-train or fine-tune the models for any specific problem. Thus, we directly use
the feature vector given for each network and do the comparison of these features
by using the cosine similarity. For each dataset, we compare the lightweight face
architectures with the state-of-the-art results reported in the literature.

4.2.1 Image Face Recognition

First, we explore efficient face verification datasets such as Labeled Faces in the
Wild (LFW) [41] and Celebrities in Frontal-Profile (CFP) [78]. Then, we also re-
port the face recognition performance on recent large-scale image datasets includ-
ing MegaFace [49], IJB-B [96], IJB-C [67] and Trillion-Pairs [1]. Figure 2 illustrates
example images from these databases.

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 2: Example face images from (a) LFW, (b) CFP-FF, (c) MegaFace, (d) IJB-B,
(e) IJB-C and (f) Trillion-Pairs databases.
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Results on LFW. LFW contains 13,233 web-collected images from 5,749 different
identities, with large variations in pose, expression and illuminations. There are
6,000 face pairs, which are divided into ten subsets, each having 300 positive
pairs and 300 negative pairs. Following the standard protocol of unrestricted with
labeled outside data, we give the verification accuracy on 6,000 face pairs as it
is shown in Table 7. We also show in the table some details of the networks and
amount of training data used. It can be seen that the five lightweight face models
achieve similar results, which are very close to the best performing ones.

Table 7: Verification accuracy (%) on LFW database.

Method #Nets Training Data Accuracy

DeepFace [82] 3 4M 97.4
FV-DCNN + pool5 [8] 1 0.5M 98.1
VGG-Face [73] 1 2.6M 98.9
CenterLoss [95] 1 0.7M 99.3
LightCNN-29 [99] 1 4M 99.3
Li-ArcFace [53] 1 5.1M 99.3
SphereFace [56] 1 0.5M 99.4
DeepID3 [80] 50 0.2M 99.5
Marginal Loss [17] 1 5M 99.5
FaceNet [77] 1 200M 99.6
Seesaw-shuffleFaceNet [110] 1 5.8M 99.6
CosFace [89] 1 5M 99.7
MobiFace [22] 1 3.8M 99.7
UniformFace [20] 1 3.8M 99.8
ResNet100-ArcFace [14] 1 5.8M 99.8
MobileFaceNet 1 5.1M 99.7
ShuffleFaceNet 1 5.1M 99.7
VarGFaceNet 1 5.1M 99.7
MobileFaceNetV1 1 5.1M 99.4
ProxylessFaceNAS 1 5.1M 99.2

Results on CFP-FF. CFP dataset [78] contains 10 frontal and 4 profile images
of 500 subjects. Two separate experiments of Frontal-Frontal (FF) and Frontal-
Profile (FP) face verification are defined, each having 10 splits with 350 same-
person pairs and 350 different-person pairs. Table 8 presents the mean and stan-
dard deviation of Accuracy, Equal Error Rate (EER) and Area Under Curve
(AUC) over the 10 splits for the CFP-FF experiment. As we can see, all the
lightweight face models outperform the reported face recognition methods, reach-
ing MobileFaceNet the state-of-the-art.

Results on MegaFace. The Megaface dataset [49] is one of the largest publicly
available testing benchmarks for evaluating face recognition performance at the
million scale of distractors. It includes a gallery set and a probe set. The gallery
set consists of a subset of Flickr photos from Yahoo [85], containing more than one
million images from 690K different individuals. The probe sets are two existing
databases: FaceScrub and FGNet. In this work, we use FaceScrub [70] as the probe
set that contains 100K photos of 530 unique individuals. In addition, we report
the performance on the refined version of MegaFace with cleaned labels from [14].
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Table 8: Verification results (%) on CFP-FF database.

Method Frontal-Frontal

Accuracy EER AUC

HoG + Sub-SML [78] 88.3 ± 1.3 11.4 94.8
FV + Sub-SML [78] 91.3 ± 0.8 8.8 96.8
Deep features [78] 96.4 ± 0.7 3.5 99.4
Human [78] 96.2 ± 0.7 5.3 98.2
FV-DCNN [8] 98.4 ± 0.5 1.5 99.9
DR-GAN [86] 98.4 ± 0.7 - -
MobileFaceNet 99.6 ± 0.2 0.4 100
ShuffleFaceNet 99.6 ± 0.3 0.5 100
VarGFaceNet 99.5 ± 0.2 0.5 100
MobileFaceNetV1 99.5 ± 0.2 0.6 99.9
ProxylessFaceNAS 98.8 ± 0.5 1.1 99.9

Table 9 shows the results obtained by the tested lightweight face models and
state-of-the art methods reported for both the identification and verification tasks
on the original and the refined MegaFace datasets. True Acceptance Rate (TAR)
under False Acceptance Rate (FAR) of 10−6 is used to report the verification
results, while the Rank-1 face accuracy is employed to the case of identification.
Since the training set used has more than 0.5 million images it is regarded as large.

From Table 9 we can see that the lightweight face models achieve compara-
ble results with respect to very deep state-of-the-art face models. Among them,
MobileFaceNet obtains the best performance, surpassing strong baselines such as
Marginal Loss [17] and ResNet50-ArcFace [14] and outperforming other lightweight
models such as Light CNN-4, -9 and -29 [99]. On the refined MegaFace, both Mo-
bileFaceNet and ShuffleFaceNet surpass ResNet50-ArcFace [14] by a clear margin
on verification and identification tasks. In the case of MobileFaceNetV1, it obtains
comparable results, while ProxylessFaceNAS considerably drops its performance.

Results on IJB-B and IJB-C. The IARPA Janus Benchmark-B (IJB-B) dataset
[96] consists of 1,845 subjects with 21,798 still images and 55,026 frames from 7,011
videos; whereas the IARPA Janus BenchmarkC (IJB-C) [67] is a further exten-
sion of IJB-B, by increasing dataset size and variability. In total, IJB-C contains
3,531 subjects with 31,334 still images and 117,542 frames from 11,779 videos.
Both datasets include test protocols that closely model operational face recogni-
tion use cases. Specifically, we follow the evaluation protocols 1:1 verification and
1:N (mixed media) identification including both closed and open-set protocols.
As performance metrics, true accepted rates (TAR) under varying false accepted
rates (FAR) are reported for the 1:1 verification protocol, while Cumulative Match
Characteristic (CMC) and Identification Error Trade-off (IET) curves are reported
for the 1:N closed-set and 1:N open-set identification protocols, respectively.

For the verification task, IJB-B provides 12,115 templates with 10,270 genuine
matches and 8M impostor matches, while IJB-C contains 23,124 templates with
19,557 genuine matches and 15,639 impostor matches. In Table 10, we compared
the TAR at different FAR values (1e-5, 1e-4 and 1e-3) of considered lightweight face
models with state-of-the-art models on both IJB-B and IJB-C datasets. As we can
observe, the very deep ResNet100-ArcFace model [14] achieves the best verification
results followed by MobileFaceNet, the second best performance reported. For the
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Table 9: Face identification and verification evaluation on the original and the
refined MegaFace using FaceScrub as test set.

Method Identification Verification

(Rank-1) (TAR@FAR=1e-6)

Original version of MegaFace [49]
Light CNN-4 [99] 60.2 62.3
Vocord-DeepVo1 75.1 67.3
Light CNN-9 [99] 67.1 77.5
Light CNN-29 [99] 73.5 84.7
FaceNet [77] 70.5 86.5
Deepsense-large 74.8 87.8
ResNet50-ArcFace [14] 77.5 92.3
UniformFace [20] 80.0 95.4
Marginal Loss [17] 80.3 92.6
AirFace [53] 80.8 96.5
CosFace [89] 82.7 96.7
ResNet100-ArcFace [14] 81.0 97.0
MobileFaceNet 79.3 95.2
VarGFaceNet 78.2 93.9
ShuffleFaceNet 77.4 93.0
MobileFaceNetV1 76.0 91.3
ProxylessFaceNAS 69.7 82.8

Refined version of MegaFace [14]
MobiFace [22] - 91.3
ResNet50-ArcFace [14] 91.8 93.7
AirFace [53] 98.0 97.9
ResNet100-ArcFace [14] 98.4 98.5
MobileFaceNet 95.8 96.8
VarGFaceNet 94.9 95.6
ShuffleFaceNet 94.1 94.6
MobileFaceNetV1 91.7 93.0
ProxylessFaceNAS 82.1 84.8

remaining lightweight face models, we can see that VarGFaceNet, ShuffleFaceNet
and MobileFaceNetV1 are able to achieve very close results, outperforming the
other state-of-the-art models. In the case of ProxylessFaceNAS, although it obtains
a lower performance, it is able to improve well-established face models such as
VGG-Face2.

In the case of the 1:N identification task, Table 11 and Table 12 present the
Rank-1 and Rank-5 accuracy for closed-set protocol and the identification per-
formance at FPIR=0.01 and FPIR=0.1 for open-set protocol on the IJB-B and
IJB-C datasets, respectively. Note that, for both datasets, all lightweight face
models, except ProxylessFaceNAS, considerably boost the IET performance of all
the reported state-of-the-art methods. As in the 1:1 verification task, also in this
case MobileFaceNet provides the best IET results, specially for low FPIR values
like 0.01, followed by VarGFaceNet, ShuffleFaceNet and MobileFaceNetV1, while
ProxylessFaceNAS is only able to improve the VGG-Face2 and MN methods. Re-
garding to the closed-set performance, we can observe that most of compared
methods perform very similar and just slightly improvements are shown between
the best performing ones. For example, in the IJB-B, DDL [42] obtains 95.4 and



Lightweight CNN Architectures for Face Recognition 17

Table 10: Verification TAR at different FARs on the IJB-B and IJB-C databases.

IJB-B IJB-C
Method 1e-5 1e-4 1e-3 1e-5 1e-4 1e-3

VGG-Face2 [6] 67.1 80.0 88.7 74.7 84.1 90.9
MN [102] 70.8 83.1 90.9 77.1 86.2 92.7
DCN [101] - 84.9 93.7 - 88.5 94.7
RKD [71] 78.4 89.6 94.7 85.5 92.1 96.1
SP [87] 79.4 89.8 94.9 85.9 92.3 96.2
ResNet50-ArcFace [14] 80.5 89.9 94.5 86.1 92.1 96.0
DDL [42] 83.4 90.7 95.2 88.4 93.1 96.3
ResNet100-ArcFace [14] - 94.2 - 93.2 95.6 -

MobileFaceNet 87.9 92.8 95.6 92.2 94.7 96.6
VarGFaceNet 87.7 92.9 95.6 91.6 94.7 96.7
ShuffleFaceNet 86.5 92.3 95.2 91.3 94.3 96.3
MobileFaceNetV1 85.7 92.0 94.7 90.4 93.9 95.9
ProxylessFaceNAS 75.8 87.1 92.8 83.0 89.7 94.4

97.2 for Rank-1 and Rank-5, respectively, while MobileFaceNet achieves 95.3 and
96.9.

Table 11: 1:N (mixed media) Identification on the IJB-B database.

Method FPIR=0.01 FPIR=0.1 Rank-1 Rank-5

VGG-Face2 [6] 70.6 83.9 90.1 94.5
RKD [71] 70.6 87.6 93.4 96.5
SP [87] 72.4 88.0 93.8 96.6
ResNet50-ArcFace [14] 73.1 88.2 93.6 96.5
DDL [42] 76.3 89.5 93.9 96.6

MobileFaceNet 81.3 92.2 94.0 96.5
VarGFaceNet 81.0 92.1 94.0 96.5
ShuffleFaceNet 80.5 91.4 93.6 96.2
MobileFaceNetV1 78.0 90.7 93.2 95.8
ProxylessFaceNAS 67.1 84.7 90.7 94.4

Results on DeepGlint-Image The DeepGlint-Image dataset [15] is used as the
large-scale image test set, which contains about 274K face images from 5.7K iden-
tities from celebrities in the LFW name list and 1.58M face images from Flickr
as distractors. Different from MegaFace [49], IJB-B [96], IJB-C [67] datasets, it
defines an extensive comparison metric for an unbiased evaluation of face recog-
nition models by comparing all possible positive and negative pairs. Thus, every
pair between gallery and probe set is used for evaluation (0.4 trillion pairs in to-
tal). We follow the evaluation protocol proposed in the DeepGlint-Light challenge
of Lightweight Face Recognition Challenge (LFR) [15] and report the verification
accuracy in terms of True Positive Rate (TPR) at different False Positive Rates
(FPRs).

In Table 13 we compare the TPR corresponding to 1e-8 and 1e-9 FPR values of
lightweight face models with state-of-the-art methods. We include in the compar-
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Table 12: 1:N (mixed media) Identification on the IJB-C database.

Method FPIR=0.01 FPIR=0.1 Rank-1 Rank-5

VGG-Face2 [6] 74.6 84.2 91.2 94.9
RKD [71] 79.3 89.1 94.6 96.9
ResNet50-ArcFace [14] 79.6 89.5 94.8 96.9
SP [87] 79.9 89.5 94.7 97.0
DDL [42] 85.4 91.1 95.4 97.2

MobileFaceNet 90.3 93.5 95.3 96.9
VarGFaceNet 89.7 93.2 95.3 96.9
ShuffleFaceNet 88.9 93.0 95.0 96.7
MobileFaceNetV1 88.5 92.3 94.7 96.4
ProxylessFaceNAS 77.9 86.5 91.8 94.8

ison the top-3 ranked algorithms of the LFR2019 [46], being “YMJ”, “count” and
“NothingLC”, the first, second and third ranked methods, respectively. We can
observe that the top-3 solutions remarkably outperform the selected lightweight
face models. However, these results are expected since some of these solutions are
based on the lightweight architectures considered in our study but they explore
additional techniques in order to improve their performance and enhance their
interpretation ability, such as new loss designs and knowledge distillation strategy.
For example, “YMJ”method is based on VarGFaceNet network but including an
equivalence of angular distillation loss to guide the lightweight network and a re-
cursive knowledge distillation to relieve the discrepancy between the teacher model
and the student model. “count” improves the performance of MobileFaceNet by
increasing the network depth and width and adding attention module, as well as
designing a novel loss function named Li-ArcFace [53] based on ArcFace. “Noth-
ingLC” employed a teacher-student framework, where DenseNet is used as the
teacher model and a modified version of the ProxylessNAS mobile network as
student model. All these strategies suggest that for large-scale datasets includ-
ing high-level pairs of comparisons, lightweight face architectures need additional
modifications aim at increase their discriminative ability.

Table 13: Verification accuracy (%) on the TrillionPairs dataset.

Method FPR=1e-9 FPR=1e-8

AM-Softmax [89] 61.61 -
SV-AM-Softmax [94] 72.71 -
ResNet100-ArcFace [14] 78.60 -
YMJ [15] 81.89 88.78
count [15] 81.20 88.42
NothingLC [15] 81.79 88.14
MobileFaceNet 70.57 80.39
VarGFaceNet 67.02 77.13
ShuffleFaceNet 64.83 75.31
MobileFaceNetV1 60.75 70.70
ProxylessFaceNAS 41.19 52.80



Lightweight CNN Architectures for Face Recognition 19

4.2.2 Video Face Recognition

Ideally, deep models are trained with massive images per person and are tested
with one image per person, but the situation will be different in reality. Sometimes,
both probe and gallery sets are represented using images or videos, but in other
cases we need to match a query video against still face images or vice versa.

In order to evaluate the lightweight face networks in this kind of scenario,
we select the YouTube Faces (YTF) [97], the COX Face [43] and the iQIYI-VID
[57] databases. In Figure 3 we show example frames from some videos of each
one of these databases. In the case of YTF and COX Face, for each video, we
choose the 50 most frontal frames and a video is represented by the average of the
corresponding 50 face descriptors.

(a)

(b)

(c)

Fig. 3: Examples face frames of videos from (a) YTF, (b) COX Face and (c)
IQIYI-Video databases.

Results on YTF. The YTF database [97] is a large video dataset for uncon-
strained face recognition in videos. It contains 3,425 videos of 1,595 subjects with
significant variations on expression, illumination, pose, resolution and background.
The standard protocol of the YTF database provides a pair-matching benchmark
corresponding to 5,000 video pairs. Specifically, these pairs are divided into ten
splits, each one containing 250 positive pairs and 250 negative ones. Under this
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protocol, three metrics are usually considered to report the verification results: the
mean accuracy, the area under curve (AUC) and the equal error rate (EER).

Recently, new relevant evaluation protocols for the YTF database (REP-YTF)
were designed in order to better fit operational face recognition systems [66]. The
proposal includes large-scale face verification at low FAR values and open/closed-
set identification protocols for both video-to-video and video-to-image compar-
isons. Under these protocols, the YTF database is divided into ten random trials
of training and test sets, containing on average, more than 800 face videos available
for training and more than 2,500 face videos for testing for each trial. For the veri-
fication protocol, the test set of each trial is used to compute the matching scores,
resulting on 2,277 genuine and 3,314,989 impostor not-duplicated comparisons on
average. Thus, over 3,317,266 video pairs comparison scores are computed for each
trial. Mean True Acceptance Rate (TAR) at 0.1% and 1% FAR values, and mean
EER over the ten random trials are used as verification performance metrics. Both
Linear Discriminant Analysis (LDA) metric learning and Cosine (Cos) similarity
are used to perform the comparison.

In Tables 14 and 15 we present the verification results obtained by the lightweight
face architectures and state-of-the-art methods on the YTF database, using the
standard protocol [97] and the REP-YTF verification protocol [66], respectively.
As we can see from Table 14, by using the standard protocol, the five lightweight
face models obtain very similar verification results, which are comparable to the
best state-of-the-art methods. In the case of REP-YTF protocol, it can be seen
from Table 15, that these lightweight models achieve the state-of-the-art by using
cosine similarity. In general, among the lightweight face architectures, Mobile-
FaceNet and VarGFaceNet obtain the best results on both protocols, followed by
ShuffleFaceNet, MobileFaceNetV1 and ProxylessNAS.

Table 14: Verification performance on YTF database using the standard protocol.

Method Accuracy AUC EER

LBinVF2 [65] 83.3 93.2 14.6
VF2 [72] 84.7 93.0 14.9
ShiftFaceNet [98] 90.1 96.1 -
DeepFace-single [82] 91.4 96.3 8.6
CenterLoss [95] 94.9 - -
TBE-CNN [19] 95.0 - -
SphereFace [56] 95.0 - -
FaceNet [77] 95.1 - -
Light CNN-29 [99] 95.5 - -
NAN [105] 95.7 98.8 -
Marginal Loss [17] 96.0 - -
VGG-Face [73] 97.3 - -
CosFace [89] 97.6 - -
UniformFace [20] 97.7 - -
ResNet100-ArcFace [14] 98.0 - -
MobileFaceNet 96.2 98.4 4.5
VarGFaceNet 96.0 98.3 5.1
ShuffleFaceNet 95.7 98.2 5.3
MobileFaceNetV1 95.2 98.0 5.6
ProxylessFaceNAS 94.4 98.0 6.1
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Table 15: Verification results (%) on YTF database using the REP-YTF protocol.

Method TAR@FAR=0.1% TAR@FAR=1% EER

LBinVF2 + LDA [66] 21.27 ± 0.5 39.59 ± 0.8 18.12 ± 0.7
VF2 + LDA [66] 20.84 ± 0.4 40.68 ± 0.8 16.37 ± 0.5
VGG-Face + JB [66] 43.04 ± 1.9 66.91 ± 1.4 9.93 ± 0.8
Dlib + LDA [66] 50.70 ± 1.2 75.98 ± 0.9 7.59 ± 0.4
ProxylessFaceNAS + LDA 69.64 ± 1.2 85.96 ± 0.8 6.17 ± 0.4
MobileFaceNetV1 + LDA 76.72 ± 1.1 88.45 ± 0.6 6.06 ± 0.3
MobileFaceNet + LDA 80.25 ± 0.9 89.94 ± 0.5 5.95 ± 0.3
ShuffleFaceNet + LDA 81.69 ± 0.9 90.85 ± 0.5 5.56 ± 0.4
VarGFaceNet + LDA 84.30 ± 0.7 91.69 ± 0.5 5.26 ± 0.3
ProxylessFaceNAS + Cos 82.86 ± 0.6 90.96 ± 0.5 5.16 ± 0.3
MobileFaceNetV1 + Cos 86.90 ± 0.6 91.90 ± 0.6 5.02 ± 0.3
ShuffleFaceNet + Cos 89.61 ± 0.5 93.16 ± 0.5 4.52 ± 0.4
MobileFaceNet + Cos 90.16 ± 0.6 93.53 ± 0.5 4.55 ± 0.3
VarGFaceNet + Cos 90.28 ± 0.6 93.56 ± 0.5 4.39 ± 0.4

For both open and closed-set REP-YTF identification protocols [66], three
different configurations of the test set are obtained for each trial by using the
openness values: 0.2, 0.5 and 0.9, resulting on different gallery sizes. Table 16 and
17 show the mean Detection and Identification Rate (DIR) at rank-1 and False
Acceptance Rate (FAR) of 1%, achieved by the lightweight face models and the
best performing methods in [66], over the ten random trials defined in the open and
closed-set REP-YTF identification protocols, respectively, both including video-
to-video and video-to-image comparisons.

Table 16: Mean DIR (%) at rank-1 and FAR = 1% for REP-YTF open-set iden-
tification protocol in video-to-video and video-to-image settings.

Method video-to-video video-to-image

(0.2) (0.5) (0.9) (0.2) (0.5) (0.9)

LBinVF2 + LDA [66] 10.05 8.57 8.18 6.58 4.78 4.53
VF2 + LDA [66] 10.67 8.47 8.84 5.95 4.92 4.82
VGG-Face + JB [66] 22.83 18.16 16.28 17.33 14.20 13.14
Dlib + LDA [66] 25.97 20.12 17.99 16.62 14.26 11.41
ProxylessFaceNAS + LDA 45.77 38.73 38.60 42.65 36.04 32.76
MobileFaceNetV1 + LDA 55.23 49.66 47.42 57.81 52.74 50.23
MobileFaceNet + LDA 59.69 53.67 51.86 60.04 56.25 53.79
ShuffleFaceNet + LDA 59.79 54.21 51.44 64.33 59.64 57.57
VarGFaceNet + LDA 65.71 60.02 57.34 66.83 61.46 59.69
ProxylessFaceNAS + Cos 68.23 63.16 60.78 60.37 55.82 53.02
MobileFaceNetV1 + Cos 76.04 73.35 71.79 69.12 64.42 61.49
ShuffleFaceNet + Cos 82.30 79.14 77.40 76.08 73.05 71.87
VarGFaceNet + Cos 82.44 79.74 76.65 76.96 73.22 70.85
MobileFaceNet + Cos 83.48 79.84 77.91 78.00 73.21 71.34

As we can see in Table 16, the open-set identification results of lightweight
face architectures are significantly superior with respect to the existing methods.
The best performance is obtained by MobileFaceNet using cosine similarity, which
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Table 17: Mean identification rates for REP-YTF closed-set identification protocol
in video-to-video and video-to-image settings.

Method video-to-video video-to-image

(0.2) (0.5) (0.9) (0.2) (0.5) (0.9)

LBinVF2 + LDA [66] 37.70 30.93 29.85 31.55 24.46 24.01
VF2 + LDA [66] 38.22 32.65 30.80 35.23 28.92 27.46
VGG-Face + LDA [66] 60.60 54.59 52.33 53.87 47.49 45.02
Dlib + LDA [66] 71.91 66.53 64.18 56.78 50.90 48.33
ProxylessFaceNAS + LDA 80.07 75.62 73.64 74.16 69.17 67.14
MobileFaceNetV1 + LDA 83.94 81.98 80.84 80.40 78.71 76.70
MobileFaceNet + LDA 86.34 84.25 83.66 82.74 80.18 79.06
ShuffleFaceNet + LDA 86.83 85.52 84.61 84.40 81.89 80.36
VarGFaceNet + LDA 88.22 86.81 85.93 86.12 83.49 82.69
ProxylessFaceNAS + Cos 86.25 84.60 83.86 83.69 80.29 78.85
MobileFaceNetV1 + Cos 88.79 87.38 86.74 84.94 82.96 81.50
ShuffleFaceNet + Cos 90.71 89.70 89.24 88.45 86.54 85.61
MobileFaceNet + Cos 91.14 89.99 89.63 88.90 87.10 86.32
VarGFaceNet + Cos 91.17 90.32 89.95 88.49 87.06 86.40

outperforms the Dlib method in more than 50%. A similar behavior is presented
in Table 17 for the closed-set protocol, where the recognition rates at rank-1 are
at least 20% better.

Results on COX Face. The COX Face database [43] was designed to simulate
video surveillance applications, including both still images and videos of 1,000
Chinese subjects. For each subject, the database contains one high-quality still
image and three video clips each captured from a different camera (Cam1, Cam2
and Cam3). The videos have natural variations in pose, expression, lighting, blur
and face resolution. COX Face database presents evaluation protocols for three
different video-based face recognition modalities: 1) Video-to-Still (V2S); 2) Still-
to-Video (S2V); and 3) Video-to-Video (V2V), respectively, taking video or still
image as query or target. For all the evaluations, ten random 300/700 partitions
are provided and the mean and the standard deviation of the face recognition
results on the 10 runs are reported.

Table 18 and 19 present the rank-1 recognition rates of the tested methods for
the V2V and V2S/S2V face recognition modalities, respectively. It can be seen
that ShuffleFaceNet, VarGFaceNet and MobileFaceNet perform very similar on
the three modalities of this database, slightly better than MobileFaceNetV1 and
ProxylessFaceNAS. We can also observed that, in the case of V2V, the performance
of lightweight models are comparable to those of state-of-the-art methods, but
when we compare a video against an image, the lightweight models perform much
better.

Results on iQIYI-VID. The IQIYI-Video dataset [15] is a large-scale benchmark
for multi-modal person identification including face, cloth, voice, gait and subtitles,
for character identification. It contains 200K videos of 10K identities from IQIYI
variety shows, films and television dramas. For evaluating, we follow the Protocol-3
proposed in the IQIYI-Light challenge of LFR2019 [15] and report the verification
accuracy in terms of True Positive Rate (TPR) at different False Positive Rates
(FPRs). To get the embedding features for videos, the feature centre of all frames
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Table 18: Recognition rates at Rank-1 for V2V face recognition on the COX Face
database.

Method V2V face recognition rate

V2-V1 V3-V1 V3-V2 V1-V2 V1-V3 V2-V3

PSCL-SS [43] 57.70 73.17 67.70 62.77 78.26 68.91
LERM-SS [44] 65.94 78.24 70.67 64.44 80.53 72.96
GGDA [31] 70.80 76.23 71.99 69.17 76.77 77.43
CDL [93] 78.43 85.31 79.71 75.56 85.84 81.87
BinVF2 [64] 93.37 96.81 95.93 93.17 96.56 96.39
VGG-Face [73] 94.51 95.34 96.39 93.39 96.10 96.60
TBE-CNN [19] 98.07 98.16 97.93 97.20 99.30 99.33
LBinVF2 [65] 97.83 98.96 98.63 97.99 98.93 98.87
VF2 [72] 98.27 99.34 99.06 98.33 99.47 99.23
ShuffleFaceNet 98.36 98.81 98.94 97.81 98.99 99.03
VarGFaceNet 97.81 98.74 98.99 98.04 99.06 99.10
MobileFaceNet 97.13 98.57 98.64 96.79 98.84 98.70
MobileFaceNetV1 96.96 98.51 98.69 96.87 98.54 98.76
ProxylessFaceNAS 96.77 98.36 98.94 96.90 98.91 99.11

Table 19: Recognition rates at Rank-1 for V2S/S2V face recognition on the COX
Face database.

Method V2S face recognition rate S2V face recognition rate

V1-S V2-S V3-S S-V1 S-V2 S-V3

PSCL-ES [43] 38.60 33.20 53.26 36.39 30.87 50.96
LERM-EA [44] 45.03 42.53 59.76 43.17 41.51 60.26
LERM-ES [44] 45.71 42.80 58.37 49.07 44.16 63.83
VGG-Face [73] 88.36 80.46 90.93 69.61 68.11 76.01
TBE-CNN [19] 93.57 93.69 98.96 88.24 87.86 95.74
VarGFaceNet 95.11 94.97 99.80 96.44 95.90 99.79
MobileFaceNet 94.80 95.33 99.63 96.06 95.57 99.86
ShuffleFaceNet 94.40 95.03 99.69 95.74 95.36 99.56
ProxylessFaceNAS 92.81 95.13 99.61 93.07 94.86 99.20
MobileFaceNetV1 92.63 93.44 99.50 93.47 94.43 99.49

from the video is computed and the extracted features are compared using Cosine
distance.

In Table 20 we present the TPR corresponding to 1e-5 and 1e-4 FPR values
for the lightweight face models and the top-3 ranked methods of the competitions,
where the first, second and third methods are “NothingLC”, “Rhapsody”and “xfr”,
respectively. Similar to the case of DeepGlint-Light challenge, the best solutions for
large-scale video face recognition, result from using lightweight face models guide
by large teacher models through a knowledge distillation method, and includ-
ing quality-aware methods to aggregate the features from different video frames.
Among the lightweight face models considered in our study, VarGFaceNet and
MobileFaceNet achieve the best verification results followed by ShuffleFaceNet,
MobileFaceNetV1 and ProxylessFaceNAS.
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Table 20: Verification accuracy (%) on the large-scale IQIYI-Video dataset.

Method FPR=1e-5 FPR=1e-4

NothingLC [15] 49.15 63.23
Rhapsody [15] 46.78 61.87
xfr [15] 46.95 61.05
MobileFaceNet 31.13 46.93
VarGFaceNet 32.03 46.43
ShuffleFaceNet 30.14 44.55
MobileFaceNetV1 26.17 39.58
ProxylessFaceNAS 10.45 21.5

4.2.3 Cross-Factor Face Recognition

Due to the complex nonlinear facial appearance, some of its variations will be
caused by people themselves, such as cross-pose and cross-age, which remain a
major challenge in face recognition community. CFP-FP [78] and Cross-Pose LFW
(CPLFW) [115] are used in this work to evaluate the performance of the face
models in the cross-pose problem, while Cross-Age LFW (CALFW) [116] and
AgeDB-30 [69] databases are used for evaluating the networks on age invariant
face recognition. Figure 4 shows some examples face images of these databases.

(a)

(b)

(c)

(d) AgeDB-30

Fig. 4: Examples face images from (a) CFP-FP, (b) CPLFW, (c) CALFW and (d)
AgeDB-30 databases containing pose and age variations.

Results on CFP-FP. The Frontal-Profile (FP) face verification experiment from
CFP dataset [78] includes 350 same-person pairs and 350 different-person pairs for
each of 10 splits. In Table 21 we present the verification results in terms of mean Ac-
curacy, Equal Error Rate (EER) and Area Under Curve (AUC) for the lightweight
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models and state-of-the-art methods. It can be seen that although DDL method
achieves the best performance, VarGFaceNet, MobileFaceNet and ShuffleFaceNet
reach competitive results, outperforming methods specifically designed for the task
at hand such as DR-GAN [86], strong very deep models like ResNet50-ArcFace [14]
and other lightweight models including Seesaw-shuffleFaceNet [110] and AirFace
[53]. MobileFaceNetV1 has a very similar performance, while ProxylessFaceNAS
degrades a little bit, but its results are still better than those reported in previous
works.

Table 21: Verification results (%) on CFP-FP database.

Method Frontal-Profile

Accuracy EER AUC

HoG + Sub-SML [78] 77.3 22.2 86.0
FV + Sub-SML [78] 80.6 19.3 88.5
Deep features [78] 84.9 14.9 93.0
Human [78] 94.6 5.0 98.9
FV-DCNN [8] 91.9 8.0 97.7
Seesaw-shuffleFaceNet [110] 92.9 - -
DR-GAN [86] 93.9 - -
AirFace [53] 94.5 - -
ResNet50-ArcFace [14] 95.6 - -
ResNet100-ArcFace [14] 98.4 -
DDL [42] 98.5 - -
VarGFaceNet 96.9 3.3 99.1
MobileFaceNet 96.9 3.6 99.1
ShuffleFaceNet 96.3 4.1 99.0
MobileFaceNetV1 95.8 4.7 98.8
ProxylessFaceNAS 94.7 7.1 95.6

Results on CPLFW and CALFW. CPLFW [115] and CALFW [116] are re-
cently introduced datasets that show higher pose and age variations, respectively,
with same identities from LFW database. Similar to the original LFW dataset,
both CPLFW and CALFW define an evaluation protocol with 10 individual sub-
sets of image pairs. Each subset has 300 positive pairs and 300 negative pairs. Table
22 presents the comparison of face verification accuracy on CPLFW and CALFW
datasets. As it can be appreciated, DDL and ResNet100-ArcFace models achieve
the bests results for both datasets. Nonetheless, lightweight face models improve
human results as well as well-established face models such as VGG-Face2 and
SphereFace by an obvious margin. Among the selected lightweight face models,
MobileFaceNet achieve the highest accuracy, followed by VarGFaceNet, Shuffle-
FaceNet, MobileFaceNetV1 and ProxylessFaceNAS.

Results on AgeDB-30. The AgeDB is an in-the-wild dataset with large varia-
tions in pose, expression, illuminations, and age [69]. It contains 16,488 images of
568 distinct subjects, such as actors/actresses, writers, scientists, and politicians.
The minimum and maximum age is 1 and 101, respectively. The average age range
for each subject is 50.3 years. There are four groups of test data with different year
gaps (5, 10, 20 and 30 years, respectively) for age-invariant face verification. Each
group has ten splits of face images, and each split contains 300 positive examples
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Table 22: Face verification accuracy (%) on CPLFW and CALFW databases.

Method CPLFW CALFW

Human-Individual 81.21 82.32
Human-Fusion 85.24 86.50
CenterLoss [95] 77.48 85.48
SphereFace [56] 81.40 90.30
VGG-Face2 [6] 84.00 90.57
ResNet100-ArcFace [14] 92.08 95.45
DDL [42] 93.43 -
MobileFaceNet 89.22 95.15
VarGFaceNet 88.55 95.15
ShuffleFaceNet 88.50 95.05
MobileFaceNetV1 87.17 94.47
ProxylessFaceNAS 84.17 92.55

and 300 negative examples. The face verification evaluation metric used is Accu-
racy, as in LFW.In this paper, we only use the most challenging subset, AgeDB-30,
to report the performance. In Table 23 we compare the verification accuracy ob-
tained by the lightweight networks with state-of-the-art results reported in the
literature. As we can see, MobileFaceNet is the top-ranked face recognition model,
followed by VarGFaceNet and ShuffleFaceNet which obtain very close results.

Table 23: Verification accuracy (%) on AgeDB-30 database.

Method Accuracy

VGG-Face [73] 85.1
CenterLoss [95] 90.7
ResNet50-ArcFace [14] 95.2
Marginal Loss [17] 95.7
Seesaw-shuffleFaceNet [110] 96.9
MobileFaceNet 97.6
VarGFaceNet 97.5
ShuffleFaceNet 97.3
MobileFaceNetV1 96.4
ProxylessFaceNAS 94.4

4.2.4 Heterogeneous Face Recognition

Heterogeneous face recognition refers to the problem of matching faces across
different visual domains. The domain gap is mainly caused by differences in the
origin of the face images, that can be due to sensory devices and cameras settings,
or to the way of obtaining the images such as the facial sketches. Specifically,
we asses the performance of the lightweight models on the low-resolution and the
photo-sketch face recognition domains, by using the SCface database [26] and the
extended UoM-SGFS [24], respectively. See Figure 5 for some examples images of
these datasets.
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(a)

(b)

Fig. 5: Examples face images from (a) SCface and (b) UoM-SGFS heterogeneous
databases.

Results on SCface. The SCface database [26] contains images of 130 subjects,
taken in uncontrolled indoor environments using five video surveillance cameras
of various qualities. For each subject, there are 15 images taken at three different
distances (five images at each distance), 4.2m (d1), 2.6m (d2) and 1.0m (d3),
by five surveillance cameras, and one frontal mugshot image taken by a digital
camera. For the experimental settings SCface defines face identification, where
frontal mugshot images (high-resolution faces) are employed as gallery, and low-
resolution face images taken by surveillance cameras at distance di; i = 1; 2; 3 are
used as probes. Note that in this study we do not fine-tuned our lightweight models
with target dataset. However, in order to be able for comparing our results with
previous works, we follow the protocol of [60,106] and report the identification
performance for 80 subjects out of 130.

In Table 24 we compare the recognition rates at rank-1 of lightweight face mod-
els with state-of-the-art methods. For a fair comparison, we do not include deep
models fine-tuned on the SCface training set. From the table we can observe that
the best result for d1 (the largest distance) is obtained by MobileFaceNet followed
by ProxylessFacceNAS, outperforming strong deeper models such as VGG-Face-
FT [60] and ResNet50-ArcFace-FT [106] and ResNet100-ArcFace [14]. Although
ShuffleFaceNet and MobileFaceNetV1 achieve lower results, they obtain a compet-
itive accuracy, improving the performance of many deep models. For the other two
distances which are relatively high-resolution images, most of the tested methods
including the lightweight face architectures achieve much better results.

Results on UoM-SGFS. The University of Malta Software-Generated face Sketch
database (extended UoM-SGFS) [24] is, to the best of our knowledge, the largest
database for evaluating facial sketch recognition. It contains two sets of sketches
from 600 subjects. The gallery is composed by a face image from every subject
taken from the color FERET face database. Set A has 600 sketches created by us-
ing EFIT-V software, while Set B contains sketches in A with some image editions
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Table 24: Identification results at rank-1 (%) on SCface database.

Method d1 (4.2m) d2 (2.6m) d3 (1.0m)

DCA [29] 12.2 18.4 25.5
RICNN [108] 23.0 66.0 74.0
LDMDS [104] 62.7 70.7 65.5
LightCNN [99] 35.8 79.0 93.8
Center Loss [95] 36.5 81.8 94.3
VGG-Face [73] 41.3 75.5 88.8
ResNet50-ArcFace [14] 48.0 92.0 99.3
ResNet100-ArcFace [14] 58.9 98.3 99.5
FAN [106] 62.0 90.0 94.8
MobileFaceNet 68.3 97.0 99.8
ProxylessFaceNAS 67.3 95.3 98.0
VarGFaceNet 59.5 96.8 99.8
MobileFaceNetV1 57.0 95.3 99.8
ShuffleFaceNet 55.5 95.3 99.3

to emulate the process performed by law enforcement specialists. We follow the
original protocol of the database where five random train/test set splits are ob-
tained and the mean Recognition Rate (RR) at Rank N is reported. On each split,
450 subjects are used for training and 150 for testing. The results of the lightweight
face models are compared with those obtained by the models reported in [68]. It
can be seen from Table 25 that, in general, the lightweight models achieve state-
of-the-art results, and perform even better than standard very deep models. They
are only overcame by the DEEPS model [25], which is based on a fine-tuning of
the standard VGG-Face, with a large number of photo-sketch pairs. Specifically,
among the lightweight models ProxylessFaceNAS reach the highest recognition
rates, follwed by VarGFaceNet, MobileFaceNetV1, ShuffleFaceNet and MObile-
FaceNet. Nonetheless, we can see that the recognition rates are still low for the
task at hand.

Table 25: Identification results at different ranks on UoM-SGFS database.

Method SetA SetB

Rank-1 Rank-10 Rank-50 Rank-1 Rank-10 Rank-50

VGG-Face [68] 20.40 55.33 81.33 30.13 66.67 88.47
Dlib [68] 28.27 74.93 97.33 42.13 84.53 99.47
DEEPS [25] 78.40 97.73 99.47 82.40 98.80 99.87
MobileFaceNet 30.13 70.53 93.60 53.87 89.73 97.60
ShuffleFaceNet 30.13 71.60 94.40 49.40 88.93 98.67
MobileFaceNetV1 33.33 75.33 95.60 51.73 92.27 99.33
VarGFaceNet 34.26 73.33 94.67 52.53 88.13 98.40
ProxylessFaceNAS 35.47 76.27 95.60 55.20 91.20 99.20
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4.2.5 Active Authentication on Mobile Devices

The University of Maryland Active Authentication Dataset (UMDAA-01) [23] is
a benchmark for evaluating the effectiveness of face recognition techniques when
used for face-based continuous authentication. The benchmark dataset contains
750 face videos captured by the front camera (and also screen touch data) of
50 distinct users, with three different illumination settings. The Session 1 was
captured with artificial lighting, videos in Session 2 were obtained without any
illumination and in Session 3 under natural sunlight. For each subject five videos
are available in each session: one with different face poses used for enrollment and
four test videos captured while the user was performing a specific activity, such
as looking at a window popup, scrolling test, taking a picture or working on a
document. Figure 6 shows some face images from UMDAA-01 for the different
activities.

Fig. 6: Examples face frames from UMDAA-01 database.

Two evaluation protocols are provided to reflect some of the challenges of a
typical face-based active authentication system. In this work, we follow protocol
1, which is the most difficult one. Under this protocol, the gallery is composed by
the enrollment videos from one session (e.g. Session 1) and the methods are tested
on the four non-enrollment video clips from the other two sessions (e.g. Sessions
2 and 3). Hence, there are six available scenarios for this protocol considering all
pairs of session combinations. The Rank-1 Recognition Rates (RR) for all session
combinations and their average values (Avg.) are presented in Table 26. It can be
seen that the five lightweight models achieve impressive results, outperforming by
a great margin the traditional methods evaluated on this protocol before.

Recently, in [59] it was evaluated the benefits of using just those frames with the
most relevant information from a video sequence instead of using all video frames.
For this, a quality value is estimated for each frame by measuring four parameters:
pose, eyes, mouth and blur. The authors evaluated three different CNN models
with a softmax function as classifier and obtained the best results by selecting



30 Yoanna Mart́ınez-Dı́az et al.

Table 26: Rank-1 recognition rates on UMDAA-01 database.

Method S1-S2 S1-S3 S2-S1 S2-S3 S3-S1 S3-S2 Avg.

FF [23] 54.48 45.27 25.52 56.80 24.77 56.01 43.80
SRC [23] 52.79 51.18 44.18 58.58 17.64 51.95 46.05
MSSRC [23] 47.21 46.15 43.06 60.36 17.64 45.85 43.38
MobileFaceNet 100.0 100.0 100.0 100.0 100.0 100.0 100.0
ShuffleFaceNet 100.0 100.0 100.0 100.0 100.0 100.0 100.0
VarGFacenet 99.00 99.50 100.0 99.00 100.0 100.0 99.58
MobileFaceNetV1 99.50 99.50 100.0 99.00 100.0 100.0 99.67
ProxylessFaceNAS 97.50 100.0 100.0 97.50 100.0 100.0 99.17

the best ten frames. In this work, we use their proposed quality measure and
test the lightweight models for the best ten frames. Table 27 shows the obtained
RR at Rank-1 for each session combination and compare them with the results
of the three models evaluated in [59]. The average (Avg.) recognition rate for
each model through all sessions is also presented in this table. It can be seen
that MobileFaceNet and ShuffleFaceNet have a very similar performance and their
results are very close to those of the deeper ResNet50 model used in [59]. Although
the recognition rates of VarGFaceNet, MobileFaceNetV1 and ProxylessFaceNAS
are lower, they are competitive. Notice that, this strategy of using the best ten
frames degrades a little bit the recognition rates, however, it is supposed to be
more efficient than using all the video frames.

Table 27: Rank-1 recognition rates on UMDAA-01 dataset, using the best 10
frames.

Method S1-S2 S1-S3 S2-S1 S2-S3 S3-S1 S3-S2 Avg.

Dlib [59] 93.18 84.09 88.64 81.82 90.91 88.64 87.88
MobileNet [59] 92.44 98.26 93.02 94.19 97.09 90.70 94.28
ResNet50 [59] 98.26 99.42 100.0 100.0 100.0 100.0 99.61
MobileFaceNet 100.0 99.50 100.0 98.50 99.50 100.0 99.58
ShuffleFaceNet 100.0 99.50 99.50 97.50 100.0 100.0 99.42
VarGFaceNet 97.50 99.50 100.0 98.00 100.0 99.50 99.08
MobileFaceNetV1 98.67 98.67 98.84 98.26 97.67 97.67 98.30
ProxylessFaceNAS 97.00 96.00 95.50 94.00 96.50 94.50 95.58

4.3 Ablation study: Effect of using common lightweight architectures

In this section we investigate the effect of using common lightweight architectures
designed for general computer vision tasks, without modifying them for the case of
face recognition. Specifically, we use the original networks of the lightweight face
models considered in our study and compare their performance on the specific
face recognition scenarios. For a fair comparison, we train all the original mod-
els (VarGNet [112], MobileNetV2 [76], ShuffleNetV2 [61], MobileNetV1 [36] and
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ProxylessNAS [5]) under the same training settings used for their face versions as
it was described in Section 4.1. In the experiments we will use ∗ to refer to the
original models implemented by ourselves.

The verification accuracy on the efficient validation datasets LFW, CFP-FP
and AgeDB-30 is shown in Table 28. We can see that, in general, the lightweight
face models achieve better results than their original versions. Specifically, in the
LFW dataset, both the original and the face models perform very similar, due to
that in this database the recognition performance is almost saturated. However, in
front of pose (results on CFP-FP) and age (AgeDB-30) variations, we can observe
greater improvements by the face architectures, which obtain the best accuracy
results.

Table 28: Verification accuracy of original lightweight models and their correspond-
ing face versions on LFW, CFP-FP and AgeDB-30 databases.

Method LFW CFP-FP AgeDB-30

VarGNet∗ 98.0 ± 0.7 85.5 ± 1.5 89.6 ± 2.0
VarGFaceNet 99.7 ± 0.3 96.9 ± 0.8 97.5 ± 0.7
MobileNetV2∗ 99.3 ± 0.5 90.5 ± 1.6 92.3 ± 1.9
MobileFaceNet 99.7 ± 0.3 96.9 ± 0.8 97.6 ± 0.6
ShuffleNet∗ 99.5 ± 0.4 96.2 ± 1.1 94.8 ± 1.1
ShuffleFaceNet 99.7 ± 0.3 96.9 ± 0.7 97.3 ± 0.8
MobileNetV1∗ 99.1 ± 0.5 93.7 ± 1.2 93.9 ± 1.2
MobileFaceNetV1 99.4 ± 0.4 95.8 ± 0.6 96.4 ± 1.1
ProxylessNAS∗ 96.3 ± 0.9 83.6 ± 1.4 82.6 ± 1.6
ProxylessFaceNAS 99.2 ± 0.5 94.7 ± 1.7 94.4 ± 1.5

In order to give more evidences of the superiority of lightweight face models, we
assess the performance of the original versions in several of the benchmark datasets
used covering all the specific recognition scenarios that have been addressed in this
study. Specifically, we report the identification rates at Rank-1 on MegaFace and
IJB-B databases for Image FR; the verification accuracy on YTF and the Rank-1
on COX Face (setting V1-V2) for Video FR; the verification accuracy on CPLFW
and CALFW for Cross-Factor FR; the identification rate at Rank-1 on SCface
(d1) for Heterogeneous FR; and the average accuracy on UMDAA-01 database
(using the best ten frames) for Active Authentication (AA) on Mobile Devices
(UMDAA-10).

Table 29 and Table 30 compare the results obtained by the original models
and their corresponding face versions on each dataset of the different FR scenar-
ios. We can observe that, in general, all the lightweight face architectures boost
the performance of their original versions in all the face recognition scenarios, es-
pecially for the case of ProxylessFaceNAS. The bigger improvements are achieved
for large-scale image FR (results on MegaFace and IJB-B), and heterogeneous FR
(results on SCface). These results show that modifications introduced in common
lightweight architectures such as applying PReLU instead of ReLU and replacing
GAP layer, are more suitable for face recognition tasks since they allow us to
extract more essential information and achieve better performance.
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Table 29: Performance comparison between original lightweight architectures and
their face version in image and video FR scenarios.

Image FR Video FR
MegaFace IJB-B YTF COX/V1-V2

(Id@Rank-1) (Rank-1) (Acc.) (Rank-1)

VarGNet∗ 72.0 83.0 92.7 94.3
VarGFaceNet 78.2 94.0 96.0 98.0
MobileNetV2∗ 71.4 83.4 93.9 91.8
MobileFaceNet 79.3 94.0 96.2 96.8
ShuffleNetV2∗ 69.7 89.0 93.3 93.4
ShuffleFaceNet 77.4 93.6 95.7 97.8
MobileNetV1∗ 71.0 89.4 92.1 93.1
MobileFaceNetV1 76.0 93.2 95.2 96.9
ProxylessNAS∗ 31.1 68.5 89.2 67.8
ProxylessFaceNAS 69.7 90.7 94.4 96.9

Table 30: Performance comparison between original lightweight architectures and
their face version in cross-factor and heterogeneous FR, as well as active authen-
tication FR scenarios.

Cross-Factor FR Heterogeneous FR AA FR
CPLFW CALFW SCface-d1 UMDAA-10
(Acc.) (Acc.) (Rank-1) (Avg. Acc.)

VarGNet∗ 81.0 91.2 47.5 96.4
VarGFaceNet 88.6 95.2 59.5 99.1
MobileNetV2∗ 80.8 90.6 46.8 90.1
MobileFaceNet 89.2 95.2 68.3 99.6
ShuffleNetV2∗ 86.0 93.2 50.3 94.4
ShuffleFaceNet 88.5 95.1 55.5 99.4
MobileNetV1∗ 84.5 92.2 52.0 96.0
MobileFaceNetV1 87.2 94.5 57.0 98.3
ProxylessNAS∗ 73.2 93.8 33.5 71.0
ProxylessFaceNAS 84.2 92.6 67.3 95.6

4.4 Computational efficiency assessment

With the emergence of mobile phones, tablets and augmented reality, FR has been
applied in mobile devices. Due to computational limitations, the recognition tasks
in these devices need to be carried out in a light but timely fashion. In this section
we aim at demonstrate the great advantages of the benchmarked lightweight face
models to be deployed in real-time applications or on resource-limited devices.

In Table 31 we present the computational requirements for each of the analyzed
lightweight architecture, and compare them with their original versions, as well as
with some state-of-the-art face recognition models in terms of the model size in
Megabytes (MB), Floating Point Operations Per Second (FLOPs), and number of
parameters (#Param.). Besidees, the inference time per image by using different
hardware settings including an Intel i7-7700HQ Laptop CPU (4 cores, 8 threads,
2.80GHz base freq.), a Nvidia Quadro P2000 Desktop GPU (5Gb GDDR5, 1024
CUDA cores), a Nvidia GeForce GTX 1050Ti Laptop GPU (4Gb GDDR5, 768
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CUDA cores) and a Nvidia GeForce GTX 1660Ti Desktop GPU (6Gb GDDR5,
1536 CUDA cores), are presented.

Table 31: Comparison of storage space, complexity and inference time on different
devices of the lightweight face architectures with their original versions as well as
state-of-the-art face recognition models.

Storage and complexity Inference time (ms)
Method Model FLOPs #Param. Intel i7- Quadro 1050 1660

size (G) (M) 7700HQ P2000 Ti Ti

VGG-Face [73] 526 15 138 1,523.4 25.2 35.3 108.9
VGG-Face2 [6] 165 4.0 25.6 433.4 19.6 21.6 14.2
ResNet100-ArcFace [14] 250 24.2 65.2 285.6 48.1 59.6 13.0
Light CNN-4 [99] 26 1.5 4.1 2653.8 41.0 55.5 14.1
Light CNN-9 [99] 32 1.0 5.6 2106.7 40.9 56.2 15.8
Light CNN-29 [99] 125 3.9 12.6 126.7 7.9 7.9 2.4
MobileNetV2∗ 7.5 0.5 1.8 103.7 11.1 14.8 4.5
ShuffleNetV2∗ 10.1 0.6 2.5 33.0 5.3 12.3 2.8
MobileNetV1∗ 12.6 1.1 3.2 99.0 5.6 20.0 1.8
VarGNet∗ 21.6 1.0 5.5 95.3 5.5 13.0 4.0
ProxylessNAS∗ 12.2 0.9 3.1 150.2 6.0 8.3 2.9
MobileFaceNet 8.2 0.9 2.0 62.4 5.5 7.3 3.3
ShuffleFaceNet 10.5 0.6 2.6 29.1 4.7 4.7 1.9
MobileFaceNetV1 13.1 1.1 3.4 53.5 4.9 8.2 1.6
VarGFaceNet 20.0 1.0 5.0 126.6 5.1 27.1 3.5
ProxylessFaceNAS 12.5 0.9 3.2 157.3 6.4 9.0 3.1

Regarding the original lightweight architectures (MobileNetV2∗, ShuffleNetV2∗,
MobileNetV1∗ and ProxylessNAS∗), we can appreciate that although they have a
slightly lower memory footprint and less number of parameters than their corre-
sponding face versions, their inference times are bigger. For example, in the cases
of MobileNetV1∗ and MobileNetV2∗ the CPU runtimes are reduced by a factor
of 2×, which is of paramount importance for real-time applications. In general,
the best inference times are obtained by ShuffleFaceNet, followed by the Mobile-
FaceNetV1.

On the other hand, compared with state-of-the-art face models, lightweight
architectures exhibit significant improvements especially in the inference speed
and storage requirements. In particular, we can see in the experiments above that
ResNet100-ArcFace [14] is one of the best performing state-of-the-art models in the
different evaluated scenarios, however, it demands high computational resources.
For example, the biggest difference in accuracy between ResNet100-ArcFace and
MobileFaceNet, is 8% in the very large-scale DeepGlint-Image dataset (one of the
most challenging databases), while in the remaining databases is less than 3%.
But regarding the computational complexity, ResNet100-ArcFace requires 19×
more storage space and involves 26× more FLOPs and 32× more parameters than
MobileFaceNet. Moreover, MobileFaceNet is at least 4× faster than ResNet100-
ArcFace in a Laptop CPU Intel i7-7700HQ.
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5 Summary and discussion

In this paper, we presented a comprehensive analysis and evaluation of lightweight
face networks specifically designed for face recognition under five specific scenar-
ios including image FR, video FR, cross-factor FR (e.g. pose and age) and het-
erogeneous FR (e.g. low-resolution and photo-sketch), as well as active authen-
tication in mobile devices. First, we reviewed different strategies that have been
proposed in the literature in order to design efficient network architectures and we
see that using lightweight face recognition models is a topic that has gained the
attention of the research community in the last years. Therefore, three successful
lightweight deep face models recently introduced specifically for face recognition,
namely VarGFaceNet [103], MobileFaceNet [9] and ShuffleFaceNet [63], were se-
lected to extract facial image representations. In addition, motivated by the strate-
gies used on these architectures, we propose to modify the MobileNetV1 [36] and
ProxylessNAS [5] architectures to enhance its discriminative ability for the spe-
cific case of face recognition, resulting two new lightweight face models named
MobileFaceNetV1 and ProxylessFaceNAS, respectively. Then, various well-known
face benchmarks were employed for the experiments to analyze the overall perfor-
mance of these five lightweight face models and the impact of different variations
present on the five specific scenarios.

The conducted experimental evaluation shows that, in general, lightweight face
networks provide promising results for face recognition. They are able to perform
very similar to state-of-the-art very deep face models in most of the face recogni-
tion scenarios. These models share common design aspects in their architectures
that we consider to be the key of their success in face recognition. These aspects
include using PReLU non-linear activation function instead of ReLU to increase
the discriminative ability of the networks, and replacing the GAP layer as the fea-
ture output layer to avoid the decrease of essential information. Among the tested
lightweight face models, MobileFaceNet and VarGFaceNet achieved the best per-
formance, followed by ShuffleFaceNet, MobileFaceNetV1 and ProxylessFaceNAS.
In the case of MobileFaceNet it enhances the discriminative ability of Mobile-
FaceNetV1 by using an inverted bottleneck structure. Meanwhile, VarGFaceNet
fixes the number of channels in a group convolution, instead of fixing the to-
tal group numbers, as it is in ShuffleFaceNet. The general effectiveness of these
modifications is demonstrated when comparing these models with their original
lightweight networks without changing them for face recognition, where the im-
provement on their performance is significant. On the other hand, an analysis of
the computational complexity of the different lightweight face models is included,
by comparing them each other and with respect to state-of-the-art approaches.
Overall, by analyzing the obtained results it is possible to determine the best
solution for practical FR systems.

Overall, although lightweight face models have achieved a significant progress
in face recognition, it remains a challenge the study of new emerged techniques in
order to enhance their performance specially on those scenarios, where the achieved
performance levels are not still as high as those from the state-of-the-art methods.
We review some issues that still remain to be addressed, as well as some general
remarks.
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5.1 Lightweight FR Accuracy

From the benchmarking lightweight face models in specific face recognition sce-
narios, it is shown that this kind of architectures are able to obtain a performance
as good as state-of-the-art methods based on complex deep learning models. High
levels of accuracy are observed for efficient image (e.g. LFW, CFP-FF) and video
(e.g. YTF) verification datasets, as well as for active authentication in mobile
devices (results on UMDAA-01). However, for very large-scale image (results on
Trillions-Pairs) and video (results on IQIYI-Video) datasets, as well as in front of
several pose variations (results on CPLFW), the performance of lightweight face
models drop, which suggest that in these scenarios additional techniques need to
used for increase the performance of this kind of models.

On the other hand, when we tested the lightweight face models on heteroge-
neous scenarios, specifically in low-resolution (results on SCface) and facial sketch
recognition (results on UoM-SGFS) domains, we reveal that the performance of
these models are very similar and in some cases better (e.g. MobileFaceNet and
ProxylessFaceNAS) than all existing methods that, like our models, have not been
fine-tuned for these specific scenarios. However, the obtained accuracy levels are
still lower and the main cause of this phenomenon is the large gap between the
training and test data. This is why state-of-the-art results are usually based on
training the networks with different modalities samples. In this sense, we asses the
performance of the MobileFaceNet by fine-tuning (FT) on the SCface database.
We follow the protocol used in [60,106] where 50 out of 130 subjects are randomly
chosen for fine-tuning the networks and the rest 80 subjects are used for testing.
There is no identity overlap between the training and test sets. Table 32 compares
the identification results for the three distances of MobileFaceNet-FT with state-
of-the-models also fine-tuned on SCface training set. We can observed that after
fine-tuning, all methods improve their accuracies considerably. MobileFaceNet-FT
achieve the best performance for d1, which is the hardest. Although deep net-
works are robust to a degree of low-resolution, they depend on real surveillance
data which are rather limited in size. It would be interesting to explore different
transfer learning strategies but this is still a challenge not only for lightweight but
also for deep models in general.

Table 32: Identification results at rank-1 (%) on SCface database.

Method d1 (4.2m) d2 (2.6m) d3 (1.0m)

VGG-Face-FT [60] 46.3 78.5 91.5
LightCNN-FT [60] 49.0 83.8 93.5
Center Loss-FT [60] 54.8 86.3 95.8
ResNet50-ArcFace-FT [106] 67.3 93.5 98.0
DCR-FT [60] 73.3 93.5 98.0
FAN-FT [106] 77.5 95.0 98.3
ResNet100-ArcFace-FT [42] 80.5 98.0 99.5
DDL-FT [42] 93.2 99.2 98.5
MobileFaceNet-FT 95.3 100.0 100.0
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5.2 Practical Applications

With the emergence of mobile phones, tablets and augmented reality, the deploy-
ment of face recognition models in these devices imposes to carry out this task in a
light but timely fashion. In this work, we have shown that the usage of lightweight
face models allow us not only recognizing faces in different scenarios with a com-
petitive accuracy to state-of-the-art models but also with lower computational
complexity. In particular, ShuffleFaceNet presents the lowest inference times, spe-
cially for lower-capacity devices (e.g. Laptop Intel i7), where it is 2× faster than
MobileFaceNet and 4× faster than VarGFaceNet. However, MobileFaceNet and
VarGFaceNet are the most accurate models in all the scenarios. Thus, depend on
the application at hand, we recommended to use MobileFaceNet to those scenar-
ios in which face recognition demands higher accuracy, while ShuffleFaceNet is
indicated when it is possible to give up a little precision in exchange for a lower
computational cost.

5.3 Future Insights

Recently, several approaches have emerged aim at improving the accuracy of
lightweight deep networks. Among them, several works mainly have focused on
how to design a more effective loss function (e.g. Li-ArcFace [53] and UniformFace
[20]). However, we have included these proposals in the comparison of lightweight
face models with state-of-the-art methods in the different scenarios (results on
LFW, CFP-FP, MegaFace, YTF) and we observed that, in general, these new
loss functions provide little improvement in accuracy; since their main robustness
lie in a better convergence during training, leading with high locality and unbal-
ance in feature distribution. On the other hand, knowledge distillation is being
actively investigated due to its architectural flexibility and effectiveness for train-
ing lightweight models. Some works [21,103] have applied knowledge distillation
during the training to enhance the interpretation ability of lightweight networks,
while others focus on new distillation loss functions [42]. Although the great suc-
cess in practice, there are not too many works on either the theoretical or empirical
understanding of knowledge distillation. The teacher-student is the most common
learning architecture to transfer the knowledge and how to select or design proper
structures of teacher and student is very important but difficult problem. Besides,
in the particular case of video-based face recognition, quality-aware aggregation
methods [15] have been shown to be useful to improve the accuracy of the models.

Regarding to additionally improve the efficiency of lightweight networks, tech-
niques such as pruning [33,52,58] and quantization [74,38,51], can be explored.
However, this topic have not been fully covered in the literature, and we think
that this deserves further attention.

6 Conclusion

In this paper we have presented a comprehensive survey of face recognition meth-
ods based on lightweight deep learning architectures. We have used five lightweight
face models to conduct an extensive experimentation on 16 face recognition datasets
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grouped in five different scenarios. The obtained results show that the lightweight
face architectures are able to achieve state-of-the-art performance in most of the
evaluated scenarios. In some cases, such as low-resolution face recognition, further
developments are needed. We showed that finetuning can helps to boost the perfor-
mance on those cases, but also we provide some insights to additional techniques
than can be explored in order to improve the efficiency and accuracy of lightweight
models for some specific problems. In addition, the five lightweight face models
were compared with their original versions in terms of accuracy and efficiency. It
was shown that the face models retain the simplicity of their original lightweight
versions, while significantly improve their accuracy on all the evaluated face recog-
nition scenarios. We conclude that the models should be selected depending on
the practical application at hand. From the evaluated models, MobileFaceNet and
VargFaceNet are in general the most accurate ones, while ShuffleFaceNet is recom-
mended when the computational resources are limited. The presented evaluation
and analysis, can serve as a baseline for future research on this topic.
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