

SOTERIA, user-friendly secured personal data management platform

Towards a Decentralized ML-enabled Data Vault

Luis S. Luévano García, PhD Postdoctoral Researcher, WIDE team, Inria Rennes Davide Frey, PhD Senior Researcher, WIDE team, Inria Rennes

Summary

- **01.** Platform description
- **02.** Decentralized version
- **03.** Decentralized Data Vault for MPC/ML
- **04.** Discussion
- **05.** Conclusion

01

Platform Description

SOTERIA Objective

- To combine a **high-level identification tool** with a **decentralized secured data storage** tool
- To enable all citizens to fully protect and control their personal data with awareness on potential privacy risks

Versions:

- Centralized and decentralized approaches

SOTERIA Centralized version

- Allow the creation of a digital identity for a centralized authentication

- Give citizens the control over their personal data.

- Develop a platform meeting European citizens' needs and expectations to maximize its acceptability

In-cloud data wallet for MPC/ML

Highlights

- Retain pseudoanonymity and unlinkability
- Empower user control over their data
- Minimize of the data shared with service providers
- Personal data protected by advanced cryptography and privacy techniques

Centralized Design for MPC/ML tasks

Entities and tasks

- Wallet holder
 - > Sends IDs and information to the In-Cloud Data Vault
- In-Cloud Data Vault
 - > Receives and stores information from Wallet Holder
 - > Responds requests from MPC / ML Cluster
- In-Cloud Multiparty Computation / Machine Learning Cluster
 - > Receives MPC / ML queries and performs computations
 - > Requests data from In-Cloud Data Vault
- Multiparty Computation / Machine Learning Querier
 - > Requests a Multiparty Computation or Machine Learning service
- Decentralized ID registry
 - > Holds registry to communicate, lookup, and register queries for Wallet holders.

High-level centralized data flow

02

Decentralized version

Motivations for decentralization

No central entity coordinating computations and data

- Private data stays in each individual's devices
- Less reliance on external services
- No centralized target for attackers
- Less reliance on expensive computing infrastructure

Security & Privacy considerations

Communication protocol

> Encryption and authentication

Neighbor selection and Topology

> Logical neighbors and effective neighbors

TEE availability and alternatives

- Secure hardware availability and encryption
- > Protection from side-channel attacks

Aggregation / Learning algorithm

- > Secure aggregation
- > Noise-based algorithms

Model parameter updates

> Privacy, Accuracy, Efficiency

Metrics

> Privacy, Accuracy, Efficiency

Training paradigms and models

- > Lightweight models, Knowledge Distillation, Quantization, Privacy-aware regularization
- > Limiting computation layers

03

Decentralized Data Vault for MPC/ML

Centralized scenario

Decentralized scenario

Decentralized data flow

DID and transaction registry

Decentralized Data Vault for MPC/ML

Security & Privacy considerations (detailed) Possible approaches

- Communication protocol
 - > Pseudoanonymization, DHT, ZKP, SSI
- Neighbor selection and Topology
 - > Epidemic protocols, Dynamic topologies
- TEE availability and alternatives
 - > Intel SGX & TXT, ARM TZ, AMD, Apple iOS Secure Enclave
 - > Encrypted layer computation, HME
- Aggregation / Learning algorithm
 - > Secure Aggregation
 - > Noise-based algorithms

- Model parameter updates
 - > Fine-tuning, hierarchical aggregation, random walks, convergence
- Metrics
 - > Accuracy: Differential privacy
 - > Efficiency: FLOPs, Latency, No. Parameters
 - > Privacy: Differential privacy, attack precision
- Training paradigms and models
 - > Lightweight Neural Networks
 - > Quantization, Privacy-aware regularization, Adversarial training, Knowledge Distillation
 - > Limiting computation layers

Communication protocol

Authentication

- TLS Encrypted communications
- Pseudoanonymity by:
 - > Distributed ID and registry
 - > Zero Knowledge Proof
 - Self-Sovereign Identity with Access Control Lists⁽¹⁾

Distributed objects

- Access Control Lists
- Distributed Hash Tables
- May require concensus depending on the object
- Enables scenarios for :
 - > E-voting
 - > Key-management systems
 - > Money transfers

(1)D. Frey, M. Gestin, and M. Raynal. The Synchronization Power (Consensus Number) of Access-Control Objects: the Case of AllowList and DenyList. In 37th International Symposium on Distributed Computing (DISC 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 281, pp. 21:1-21:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023) https://doi.org/10.4230/LIPIcs.DISC.2023.21

Decentralized Data Vault for MPC/ML

Communication protocol

Security & Privacy considerations (detailed) Possible approaches

- Communication protocol
 - > Pseudoanonymization, DHT, ZKP, SSI
- Neighbor selection and Topology
 - > Epidemic protocols, Dynamic topologies
- TEE availability and alternatives
 - > Intel SGX & TXT, ARM TZ, AMD, Apple iOS Secure Enclave
 - > Encrypted layer computation, HME
- Aggregation / Learning algorithm
 - > Secure Aggregation
 - > Noise-based algorithms

- Model parameter updates
 - > Fine-tuning, hierarchical aggregation, random walks, convergence
- Metrics
 - > Accuracy: Differential privacy
 - > Efficiency: FLOPs, Latency, No. Parameters
 - > Privacy: Differential privacy, attack precision
- Training paradigms and models
 - > Lightweight Neural Networks
 - > Quantization, Privacy-aware regularization, Adversarial training, Knowledge Distillation
 - > Limiting computation layers

Neighbor selection and topology

Neighbor selection

- Gossip/epidemic protocol-based communication⁽¹⁾
- Dynamic view changes
- Balancing number of effective neighbors
- Policy for enforcing individual privacy

Topology

- Time Varying Exponential
- Dynamic addition of members
- Impact on:
 - > Accuracy and convergence⁽²⁾
 - > Privacy per number of connections
 - > Communication latency

⁽²⁾ T. Vogels et al. 2022. Beyond spectral gap: The role of the topology in decentralized learning. Advances in Neural Information Processing Systems, 35, 15039-15050.

⁽¹⁾ C. Georgiou et al. 2008. On the complexity of asynchronous gossip. In Proceedings of the twenty-seventh ACM symposium on Principles of distributed computing (pp. 135-144).

Decentralized Data Vault for MPC/ML

Neighbor selection and Topology

Security & Privacy considerations (detailed) Possible approaches

- Communication protocol
 - > Pseudoanonymization, DHT, ZKP, SSI
- Neighbor selection and Topology
 - > Epidemic protocols, Dynamic topologies
- TEE availability and alternatives
 - > Intel SGX & TXT, ARM TZ, AMD, Apple iOS Secure Enclave
 - > Encrypted layer computation, HME
- Aggregation / Learning algorithm
 - > Secure Aggregation
 - > Noise-based algorithms

- Model parameter updates
 - > Fine-tuning, hierarchical aggregation, random walks, convergence
- Metrics
 - > Accuracy: Differential privacy
 - > Efficiency: FLOPs, Latency, No. Parameters
 - > Privacy: Differential privacy, attack precision
- Training paradigms and models
 - > Lightweight Neural Networks
 - > Quantization, Privacy-aware regularization, Adversarial training, Knowledge Distillation
 - > Limiting computation layers

Trusted Execution Environments and alternatives

Implementations

- Intel SGX & TXT, ARM TZ, Apple iOS SE, AMD
- Applications
 - > Local and remote attestation(1)
 - > Isolated computation
 - > Cryptographic services
 - > Control Flow Attestation(3)

Considerations

- Availability & platform restrictions
- Encryption-based alternatives on TEE unavailability⁽⁴⁾
- Continued research on vulnerabilities
 - > Mitigate side-channels(2)
- Trade-offs:
 - > Computation overhead
 - > Limited computing resources

⁽⁴⁾K. Cheng et al. 2023. Manto: A Practical and Secure Inference Service of Convolutional Neural Networks for IoT. IEEE Internet of Things Journal. PP. 1-1. 10.1109/IIOT.2023.3251982.

⁽¹⁾Intel. 2023. Attestation & Provisioning Services Intel Software Guard Extensions. hhttps://www.intel.com/content/www/us/en/developer/tools/software-guard-extensions/attestation-services.html

⁽²⁾K. Fumiyuki et al.. 2023. OLIVE: Oblivious Federated Learning on Trusted ExecutionEnvironment against the risk of sparsification. arXiv:2202.07165 [cs.LG]

⁽³⁾M. Morbitzer et al. 2022. GuaranTEE: Introducing Control-Flow Attestation forTrusted Execution Environments. arXiv:2202.07380 [cs.CR]

Decentralized Data Vault for MPC/ML

TEE availability and alternatives

Security & Privacy considerations (detailed) Possible approaches

- Communication protocol
 - > Pseudoanonymization, DHT, ZKP, SSI
- Neighbor selection and Topology
 - > Epidemic protocols, Dynamic topologies
- TEE availability and alternatives
 - > Intel SGX & TXT, ARM TZ, AMD, Apple iOS Secure Enclave
 - > Encrypted layer computation, HME
- Aggregation / Learning algorithm
 - > Secure Aggregation
 - > Noise-based algorithms

- Model parameter updates
 - > Fine-tuning, hierarchical aggregation, random walks, convergence
- Metrics
 - > Accuracy: Differential privacy
 - > Efficiency: FLOPs, Latency, No. Parameters
 - > Privacy: Differential privacy, attack precision
- Training paradigms and models
 - > Lightweight Neural Networks
 - > Quantization, Privacy-aware regularization, Adversarial training, Knowledge Distillation
 - > Limiting computation layers

Aggregation / Learning algorithm

Masking with Lossless noise

- No accuracy loss
- Global masking⁽¹⁾
 - > Centralized scenarios.
 - > Requires cooperation by all nodes
- Local masking
 - > Additional communications
 - > Must trust neighbors

Noise injection⁽²⁾

- SGD can manage noisy models
- Differential Privacy⁽³⁾ as a "gold standard"
- Trade-offs:
 - > Lower accuracy
 - > Longer training times

Secure aggregation

• Filtering updates from malicious clients(4)

⁽⁴⁾ Tramer, F., & Boneh, D. (2018). Slalom: Fast, verifiable and private execution of neural networks in trusted hardware. arXiv preprint arXiv:1806.03287.

⁽¹⁾Bonawitz, K.; Ivanov, V.; Kreuter, B.; Marcedone, A.; McMahan, H. B.; Patel, S.; Ramage, D.; Segal, A.; Seth, K. Practical Secure Aggregation for Privacy-Preserving Machine Learning. In ACM SIGSAC, 2017.

⁽²⁾Cyffers, E.; Even, M.; Bellet, A.; Massoulié, L. Muffliato: Peer-to-Peer Privacy Amplification for Decentralized Optimization and Averaging. Advances in Neural Information Processing Systems 2022, 35, 15889–15902.

⁽³⁾ Dwork, C.; Smith, A.; Steinke, T.; Ullman, J. Exposed! A Survey of Attacks on Private Data. Annu. Rev. Stat. Appl. 2017, 4 (1), 61-84.

Decentralized Data Vault for MPC/ML

Aggregation / Learning algorithm

Security & Privacy considerations (detailed) Possible approaches

- Communication protocol
 - > Pseudoanonymization, DHT, ZKP, SSI
- Neighbor selection and Topology
 - > Epidemic protocols, Dynamic topologies
- TEE availability and alternatives
 - > Intel SGX & TXT, ARM TZ, AMD, Apple iOS Secure Enclave
 - > Encrypted layer computation, HME
- Aggregation / Learning algorithm
 - > Secure Aggregation
 - > Noise-based algorithms

Model parameter updates

- > Fine-tuning, hierarchical aggregation, random walks, convergence
- Metrics
 - > Accuracy: Differential privacy
 - > Efficiency: FLOPs, Latency, No. Parameters
 - > Privacy: Differential privacy, attack precision
- Training paradigms and models
 - > Lightweight Neural Networks
 - > Quantization, Privacy-aware regularization, Adversarial training, Knowledge Distillation
 - > Limiting computation layers

Model parameter updates

Fine-tuning updates

- Less risk of leakage in training
- Slower convergence
- Protects Querier intelectual property
- Ability to use GPUs in certain layers

Update strategy

- Affected by neighbor selection and topology
- Random walk-based, gossip-based⁽¹⁾
- Affects convergence of the model Hierarchical aggregation
- Group-based strategy desgining group leaders and bottom-up aggregation

(1) Cyffers, E., Bellet, A., & Upadhyay, J. (2024). Differentially Private Decentralized Learning with Random Walks. arXiv preprint arXiv:2402.07471.

Decentralized Data Vault for MPC/ML

Model parameter updates

Security & Privacy considerations (detailed) Possible approaches

- Communication protocol
 - > Pseudoanonymization, DHT, ZKP, SSI
- Neighbor selection and Topology
 - > Epidemic protocols, Dynamic topologies
- TEE availability and alternatives
 - > Intel SGX & TXT, ARM TZ, AMD, Apple iOS Secure Enclave
 - > Encrypted layer computation, HME
- Aggregation / Learning algorithm
 - > Secure Aggregation
 - > Noise-based algorithms

- Model parameter updates
 - > Fine-tuning, hierarchical aggregation, random walks, convergence

Metrics

- > Accuracy: Differential privacy
- > Efficiency: FLOPs, Latency, No. Parameters
- > Privacy: Differential privacy, attack precision
- Training paradigms and models
 - > Lightweight Neural Networks
 - > Quantization, Privacy-aware regularization, Adversarial training, Knowledge Distillation
 - > Limiting computation layers

Metrics

Performance metrics

- Introduce privacy to the performance metrics
- In terms of
 - > Accuracy (precision, recall, etc.)
 - > Efficiency (FLOPs, latency, # params.)
 - > Privacy (Differential privacy⁽¹⁾, attack perf.)
 - > Network communication latency
 - > Model convergence (# rounds)

Considerations

- Extensive evaluations needed to achieve best balance for the system and regulation compliance
- Measuring privacy mostly depends on attack performance

(1) I. Mironov, "Rényi Differential Privacy," 2017 IEEE 30th Computer Security Foundations Symposium (CSF), Santa Barbara, CA, USA, 2017, pp. 263-275, doi: 10.1109/CSF.2017.11. keywords: {Privacy; Standards; Tools; Databases; Additives; Computer security; Google; differential privacy; renyi divergence},

Decentralized Data Vault for MPC/ML

Wallet

Metrics

Security & Privacy considerations (detailed) Possible approaches

- Communication protocol
 - > Pseudoanonymization, DHT, ZKP, SSI
- Neighbor selection and Topology
 - > Epidemic protocols, Dynamic topologies
- TEE availability and alternatives
 - > Intel SGX & TXT, ARM TZ, AMD, Apple iOS Secure Enclave
 - > Encrypted layer computation, HME
- Aggregation / Learning algorithm
 - > Secure Aggregation
 - > Noise-based algorithms

- Model parameter updates
 - > Fine-tuning, hierarchical aggregation, random walks, convergence
- Metrics
 - > Accuracy: Differential privacy
 - > Efficiency: FLOPs, Latency, No. Parameters
 - > Privacy: Differential privacy, attack precision
- Training paradigms and models
 - > Lightweight Neural Networks
 - > Quantization, Privacy-aware regularization, Adversarial training, Knowledge Distillation
 - > Limiting computation layers

Training Paradigms and Models

Efficient models

- Less parameters, smaller models, less leakage, less communication overhead
- Approaches
 - > Quantization (2 to 8 bits)(1)
 - > Lightweight DNNs⁽³⁾/Transformers
 - > Privacy-aware training regularization(2)
 - > Knowledge Distillation(1)

Considerations

- Highly efficient and accurate
- Fine-tuning with fewer layers feasible
- Can be highly biased
 - > Adversarial training for bias mitigation
- Trade-offs:
 - Balance accuracy, efficiency and privacy

⁽³⁾ A. Howard et al. Searching for MobileNetV3. Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 2019, pp. 1314-1324

⁽¹⁾Y. Choi et al. Data-Free Network Quantization With Adversarial Knowledge Distillation. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, 2020, pp. 710-711

⁽²⁾Y.Kaya et al. (2020). On the effectiveness of regularization against membership inference attacks. arXiv preprint arXiv:2006.05336.

Decentralized Data Vault for MPC/ML

Training paradigms and models

04

Discussion

Challenges

Computation overhead, attacks, and performance

- Machine Learning attacks
 - >Inversion/Reconstruction, membership inference, etc.
- Communication overheads over large-scale systems
 - > Training paradigms, topology and neighbor selection, etc.
- Convergence and stability
- Balancing accuracy, efficiency, and privacy
- Active malicious neighbors

Applications for decentralized MPC/ML

- Fraud detection
- Healthcare Data Analysis
- Social networking
- Distributed biometrics authentication
- Privacy-Preserving Personalized Advertising

Proposed timeline (1-year)

05

Conclusion

Conclusion

- Potential on compelling applications
- **Empowers** users' control of their local data
- Mitigate risks when computing with local data
- Increase in complexity
- Analyze and prevent data leakage
- Performance considerations
- Compliance with GDPR regulations

Thank you!

Follow us at www.inria.fr

luis-santiago.luevano-garcia@inria.fr davide.frey@inria.fr

