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Platform Description
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SOTERIA Objective
- To combine a high-level identification tool with a decentralized 
secured data storage tool
- To enable all citizens to fully protect and control their personal 
data with awareness on potential privacy risks

Versions:
- Centralized and decentralized approaches
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Platform Description – Centralized version
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SOTERIA Centralized version
- Allow the creation of a digital identity for a centralized authentication

- Give citizens the control over their personal data.

- Develop a platform meeting European citizens' needs and expectations to   
maximize its acceptability
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Platform description - Centralized version
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In-cloud data wallet for MPC/ML
Highlights

Retain pseudoanonymity and unlinkability

Empower user control over their data

Minimize of the data shared with service providers

Personal data protected by advanced cryptography and privacy techniques
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Platform Description – Centralized version
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Centralized Design for MPC/ML tasks
Entities and tasks
Wallet holder

>Sends IDs and information to the In-Cloud Data Vault
In-Cloud Data Vault

>Receives and stores information from Wallet Holder
>Responds requests from MPC / ML Cluster

In-Cloud Multiparty Computation / Machine Learning Cluster
>Receives MPC / ML queries and performs computations
>Requests data from In-Cloud Data Vault

Multiparty Computation / Machine Learning Querier
>Requests a Multiparty Computation or Machine Learning service

Decentralized ID registry
>Holds registry to communicate, lookup, and register queries for Wallet holders.
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High-level centralized data flow
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Decentralization considerations

-

Motivations for decentralization
No central entity coordinating computations and data

Private data stays in each individual’s devices

Less reliance on external services

No centralized target for attackers

Less reliance on expensive computing infrastructure



1
1

Decentralization considerations

-

Security & Privacy considerations
Communication protocol

>Encryption and authentication

Neighbor selection and Topology
>Logical neighbors and effective neighbors

TEE availability and alternatives
>Secure hardware availability and 

encryption
>Protection from side-channel attacks

Aggregation / Learning algorithm
>Secure aggregation
>Noise-based algorithms

Model parameter updates
>Privacy, Accuracy, Efficiency

Metrics
>Privacy, Accuracy, Efficiency

Training paradigms and models
>Lightweight models, Knowledge Distillation, 

Quantization, Privacy-aware regularization
>Limiting computation layers
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for MPC/ML
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Decentralized Data Vault for MPC/ML
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Centralized scenario
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Decentralized Data Vault for MPC/ML
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Decentralized scenario
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Decentralized Data Vault for MPC/ML
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Decentralized data flow
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Decentralized Data Vault for MPC/ML
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Decentralized Data Vault for MPC/ML
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Communication protocol
>Pseudoanonymization, DHT, ZKP, SSI

Neighbor selection and Topology
>Epidemic protocols, Dynamic topologies

TEE availability and alternatives
>Intel SGX & TXT, ARM TZ, AMD, Apple iOS 

Secure Enclave
>Encrypted layer computation, HME

Aggregation / Learning algorithm
>Secure Aggregation
>Noise-based algorithms

Model parameter updates
>Fine-tuning, hierarchical aggregation, random 

walks, convergence
Metrics

>Accuracy: Differential privacy
>Efficiency: FLOPs, Latency, No. Parameters
>Privacy: Differential privacy, attack precision

Training paradigms and models
>Lightweight Neural Networks
>Quantization, Privacy-aware regularization, 

Adversarial training, Knowledge Distillation
>Limiting computation layers

Security & Privacy considerations (detailed) 
Possible approaches
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Decentralized Data Vault for MPC/ML

16/04/2024-

Communication protocol

(1)D. Frey, M. Gestin, and M. Raynal. The Synchronization Power (Consensus Number) of Access-Control Objects: the Case of AllowList and DenyList. In 37th 
International Symposium on Distributed Computing (DISC 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 281, pp. 21:1-21:23, Schloss 
Dagstuhl – Leibniz-Zentrum für Informatik (2023) https://doi.org/10.4230/LIPIcs.DISC.2023.21

Distributed objects
Access Control Lists

Distributed Hash Tables

May require concensus depending on the object

Enables scenarios for :
>E-voting
>Key-management systems
>Money transfers

Authentication
TLS Encrypted communications

Pseudoanonymity by:
>Distributed ID and registry
>Zero Knowledge Proof
>Self-Sovereign Identity with Access Control 

Lists(1)
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Decentralized Data Vault for MPC/ML
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Communication 
protocol
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Decentralized Data Vault for MPC/ML
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Communication protocol
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Neighbor selection and Topology
>Epidemic protocols, Dynamic topologies
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Secure Enclave
>Encrypted layer computation, HME

Aggregation / Learning algorithm
>Secure Aggregation
>Noise-based algorithms

Model parameter updates
>Fine-tuning, hierarchical aggregation, random 

walks, convergence
Metrics

>Accuracy: Differential privacy
>Efficiency: FLOPs, Latency, No. Parameters
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Possible approaches
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Decentralized Data Vault for MPC/ML
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Neighbor selection and topology
Neighbor selection
Gossip/epidemic protocol-based 

communication(1)

Dynamic view changes
Balancing number of effective neighbors
Policy for enforcing individual privacy

(1) C. Georgiou et al. 2008. On the complexity of asynchronous gossip. In Proceedings of the twenty-seventh ACM symposium on Principles of distributed 
computing (pp. 135-144).
(2) T. Vogels et al. 2022. Beyond spectral gap: The role of the topology in decentralized learning. Advances in Neural Information Processing Systems, 35, 15039-
15050.

Topology
Time Varying Exponential
Dynamic addition of members

Impact on:
>Accuracy and convergence(2)

>Privacy per number of connections
>Communication latency



2
3

Decentralized Data Vault for MPC/ML
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Neighbor selection 
and Topology
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Decentralized Data Vault for MPC/ML
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Communication protocol
>Pseudoanonymization, DHT, ZKP, SSI

Neighbor selection and Topology
>Epidemic protocols, Dynamic topologies

TEE availability and alternatives
>Intel SGX & TXT, ARM TZ, AMD, Apple iOS 

Secure Enclave
>Encrypted layer computation, HME

Aggregation / Learning algorithm
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walks, convergence
Metrics

>Accuracy: Differential privacy
>Efficiency: FLOPs, Latency, No. Parameters
>Privacy: Differential privacy, attack precision

Training paradigms and models
>Lightweight Neural Networks
>Quantization, Privacy-aware regularization, 

Adversarial training, Knowledge Distillation
>Limiting computation layers

Security & Privacy considerations (detailed) 
Possible approaches
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Decentralized Data Vault for MPC/ML
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Trusted Execution Environments 
and alternatives
Implementations
Intel SGX & TXT, ARM TZ, Apple iOS SE, 

AMD
Applications

>Local and remote attestation(1)

>Isolated computation
>Cryptographic services
>Control Flow Attestation(3)

(1)Intel. 2023. Attestation & Provisioning Services Intel Software Guard Extensions. hhttps://www.intel.com/content/www/us/en/developer/tools/software-guard-
extensions/attestation-services.html
(2)K. Fumiyuki et al.. 2023. OLIVE: Oblivious Federated Learning on Trusted ExecutionEnvironment against the risk of sparsification. arXiv:2202.07165 [cs.LG]
(3)M. Morbitzer et al. 2022. GuaranTEE: Introducing Control-Flow Attestation forTrusted Execution Environments. arXiv:2202.07380 [cs.CR]
(4)K. Cheng et al. 2023. Manto: A Practical and Secure Inference Service of Convolutional Neural Networks for IoT. IEEE Internet of Things Journal. PP. 1-1. 
10.1109/JIOT.2023.3251982.

Considerations
Availability & platform restrictions
Encryption-based alternatives on TEE 

unavailability(4)

Continued research on vulnerabilities
>Mitigate side-channels(2)

Trade-offs :
>Computation overhead
>Limited computing resources
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Decentralized Data Vault for MPC/ML
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alternatives
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Decentralized Data Vault for MPC/ML
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Communication protocol
>Pseudoanonymization, DHT, ZKP, SSI

Neighbor selection and Topology
>Epidemic protocols, Dynamic topologies

TEE availability and alternatives
>Intel SGX & TXT, ARM TZ, AMD, Apple iOS 

Secure Enclave
>Encrypted layer computation, HME

Aggregation / Learning algorithm
>Secure Aggregation
>Noise-based algorithms

Model parameter updates
>Fine-tuning, hierarchical aggregation, random 

walks, convergence
Metrics

>Accuracy: Differential privacy
>Efficiency: FLOPs, Latency, No. Parameters
>Privacy: Differential privacy, attack precision

Training paradigms and models
>Lightweight Neural Networks
>Quantization, Privacy-aware regularization, 

Adversarial training, Knowledge Distillation
>Limiting computation layers

Security & Privacy considerations (detailed) 
Possible approaches
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Decentralized Data Vault for MPC/ML – Noise-based approaches
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Aggregation / Learning algorithm
Masking with Lossless noise
No accuracy loss
Global masking(1)

>Centralized scenarios.
>Requires cooperation by all nodes

(1)Bonawitz, K.; Ivanov, V.; Kreuter, B.; Marcedone, A.; McMahan, H. B.; Patel, S.; Ramage, D.; Segal, A.; Seth, K. Practical Secure Aggregation for Privacy-
Preserving Machine Learning. In ACM SIGSAC, 2017.
(2)Cyffers, E.; Even, M.; Bellet, A.; Massoulié, L. Muffliato: Peer-to-Peer Privacy Amplification for Decentralized Optimization and Averaging. Advances in Neural 
Information Processing Systems 2022, 35, 15889–15902.
(3)Dwork, C.; Smith, A.; Steinke, T.; Ullman, J. Exposed! A Survey of Attacks on Private Data. Annu. Rev. Stat. Appl. 2017, 4 (1), 61–84. 
(4)Tramer, F., & Boneh, D. (2018). Slalom: Fast, verifiable and private execution of neural networks in trusted hardware. arXiv preprint arXiv:1806.03287.

Noise injection(2)

SGD can manage noisy models
Differential Privacy(3) as a "gold standard"
Trade-offs :

>Lower accuracy
>Longer training timesLocal masking

>Additional communications
>Must trust neighbors Secure aggregation

Filtering updates from malicious clients(4)
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Decentralized Data Vault for MPC/ML – Noise-based approaches
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Model parameter updates
Fine-tuning updates
Less risk of leakage in training

Slower convergence

Protects Querier intelectual property

Ability to use GPUs in certain layers

(1)Cyffers, E., Bellet, A., & Upadhyay, J. (2024). Differentially Private Decentralized Learning with Random Walks. arXiv preprint arXiv:2402.07471.

Update strategy
Affected by neighbor selection and 

topology

Random walk-based, gossip-based(1)

Affects convergence of the model
Hierarchical aggregation
Group-based strategy desgining group 

leaders and bottom-up aggregation
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Decentralized Data Vault for MPC/ML
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Metrics
Performance metrics
Introduce privacy to the performance 

metrics

In terms of
>Accuracy (precision, recall, etc.)
>Efficiency (FLOPs, latency, # params.)
>Privacy (Differential privacy(1), attack perf.)
>Network communication latency
>Model convergence (# rounds)

(1) I. Mironov, "Rényi Differential Privacy," 2017 IEEE 30th Computer Security Foundations Symposium (CSF), Santa Barbara, CA, USA, 2017, pp. 263-275, doi: 
10.1109/CSF.2017.11. keywords: {Privacy;Standards;Tools;Databases;Additives;Computer security;Google;differential privacy;renyi divergence},

Considerations
Extensive evaluations needed to achieve 

best balance for the system and 
regulation compliance

Measuring privacy mostly depends on 
attack performance
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Decentralized Data Vault for MPC/ML
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Decentralized Data Vault for MPC/ML
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Training Paradigms and Models
Efficient models
Less parameters, smaller models, less 

leakage, less communication overhead
Approaches

>Quantization (2 to 8 bits)(1)

>Lightweight DNNs(3)/Transformers
>Privacy-aware training regularization(2)

>Knowledge Distillation(1)

(1)Y. Choi et al. Data-Free Network Quantization With Adversarial Knowledge Distillation. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern 
Recognition (CVPR) Workshops, 2020, pp. 710-711
(2)Y.Kaya et al. (2020). On the effectiveness of regularization against membership inference attacks. arXiv preprint arXiv:2006.05336.
(3)A.Howard et al. Searching for MobileNetV3. Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 2019, pp. 1314-1324

Considerations
Highly efficient and accurate
Fine-tuning with fewer layers feasible
Can be highly biased

>Adversarial training for bias mitigation
Trade-offs :

>Balance accuracy, efficiency and 
privacy
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Decentralized Data Vault for MPC/ML
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Training paradigms 
and models



3
9

04

04/16/2024-

Discussion



4
0

Discussion

04/16/2024-

Challenges
Computation overhead, attacks, and performance 
Machine Learning attacks

>Inversion/Reconstruction, membership inference, etc. 
Communication overheads over large-scale systems

>Training paradigms, topology and neighbor selection, etc.
Convergence and stability
Balancing accuracy, efficiency, and privacy
Active malicious neighbors
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Discussion

04/16/2024-

Applications for decentralized 
MPC/ML
Fraud detection
Healthcare Data Analysis
Social networking
Distributed biometrics authentication
Privacy-Preserving Personalized Advertising
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Discussion
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Proposed timeline (1-year)
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Conclusion
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Potential on compelling applications
Empowers users’ control of their local data
Mitigate risks when computing with local data
Increase in complexity
Analyze and prevent data leakage
Performance considerations
Compliance with GDPR regulations
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