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Abstract

Efficient face recognition is a key challenge in Computer
Vision, prompting the exploration of strategies that balance
accuracy and computational resources. In this work, we
conduct a thorough comparative analysis of three modern
approaches for face recognition tasks: Lightweight Con-
volutional Neural Networks (CNNs), Vision Transformers
(ViTs), and Binarized Neural Networks (BNNs). We exam-
ine novel architectures for their design principles and effi-
ciency tactics. We also explore ViT-based approaches with
the potential for global context comprehension using self-
attention mechanisms. To enhance efficiency, we investigate
BNNs, utilizing binary weights and quantization techniques
to reduce memory and computation requirements. Through
a systematic evaluation and comparison, we identify the
strengths and limitations of these approaches. Building
over these insights, we suggest concrete refinements that
could be present in BNN designs for harnessing the re-
cent progress of these three modern avenues. We specifi-
cally focus on efficient and accurate face recognition sce-
narios being available on extremely hardware-constrained
platforms, such as the Nvidia Jetson Nano.

1. Introduction

Face Recognition (FR) technology has gained
widespread importance in various applications [16],
from enhancing security systems to improving user
experience in personal devices. In the realm of deep
learning, recent advancements have opened up intriguing
possibilities for combining different techniques to enhance
face recognition systems. Specifically, the integration of

Efficient Convolutional Neural Networks (CNNs) [8] and
Vision Transformers (ViTs) [14], complemented by atten-
tion mechanisms, binarization [5], and quantization [19],
offers a pragmatic approach to achieving both efficiency
and accuracy in real-time applications.

Quantization techniques improve efficiency with 16 and
8-bit length computations, now being a standard for achiev-
ing high efficiency without seriously compromising accu-
racy in various Computer Vision applications. These types
of approaches can also strike a balance between effective-
ness and privacy, mitigating gradient leakage in machine
learning computations, paramount in today’s AI-powered
landscape for sensitive applications [9]. Extreme quanti-
zation, also known as Binarization [5, 6] for 1-bit neu-
ral network computations, heavily reduces computing re-
quirements by using mostly binary weights and intermedi-
ate map representations. This aggressive quantization offers
a promising avenue for implementing extremely efficient
face recognition solutions on the edge for real-world appli-
cations. Binary Neural Networks (BNNs) [6] have shown
progress on quantization schemes [30] and architecture de-
signs [2, 3, 17] to alleviate the penalties present in binariza-
tion scenarios, particularly information loss, computation
stability, and the struggle to achieve real-time performance
on affordable embedded hardware. This leaves Binarized
FR scenarios remaining to be explored.

Further studies are needed to advance the state of the
art with the potential of harnessing the efficiency benefits
of Binarization with the higher accuracy of CNNs [8], and
ViTs on FR scenarios [15], with current analysis limiting
to 6 and 8-bit representations [13]. Studying the practical
aspects of binarization could bring real-time efficient mod-
els to heavily constrained ARM-based platforms, such as



the Nvidia Jetson Nano. As such, in this work, we aim to
contribute by exploring the limits of practical extreme quan-
tization and architecture designs for FR, within the scope of
bringing this application to a hybrid architecture accuracy
in real-time for an embedded platform.

2. Lightweight CNNs for Face Recognition
In this section, we review of state-of-the-art Lightweight

CNNs tailored for FR. The results are shown in Table 1.

MobileFaceNet In [4] the authors incorporate a Squeeze-
And-Excitation component in its initial configuration, along
with inverted bottleneck arrangements. It substitutes the
conventional Global Average Pooling (GAP) layer with a
Global DepthWise Convolution (GDC) in the embedding
block, resulting in a 128-D embedding output, while em-
ploying PReLU [28] activations. The main resource for
reducing computations is the employment of 1×1 convo-
lutions for reducing the computational costs, while using
strided DepthWise convolutions to reduce the feature map
size while maintaining more of the input signal.

ShuffleFaceNet The ShuffleFaceNet [20] architecture in-
troduces a rapid 2-stride downsampling technique at the
initial convolutional layer. It substitutes the conventional
GAP layer with a GDC layer and adopts the PReLU ac-
tivation as well as MobileFaceNet. The feature represen-
tation is condensed to a concise 128 embedding after the
GDC layer. The approach gradually diminishes intermedi-
ate representations while progressively expanding the chan-
nel size, reaching a 7×7×1024 configuration before the
GDC layer. This method predominantly utilizes DepthWise
operators in its block design. Here, the channel dimension
is split, followed by convolutions applied only to a subset of
input channels using pointwise and separable convolutions.
Then, the feature map is concatenated and channel shuffling
is employed, facilitating later-stage convolutions for addi-
tional channels. The downsampling block uses 2-strided
DepthWise convolutions, 1×1 pointwise convolutions, and
channel shuffling.

VarGFaceNet In this method [29], a consistent num-
ber of channels is utilized, while adjusting the quan-
tity of groups in its variable group convolutional layer.
This approach also features the PReLU activation, intro-
duces a Squeeze-And-Excitation block in their modular
design, with a pointwise convolutional layer before Fully
Connected layers, outputting a 512-D embedding output.
Achieving top performance involves Knowledge Distilla-
tion with a ResNet100 teacher network with 24GFLOPs of
computational complexity. Although VarGFaceNet outper-
forms MobileFaceNet in accuracy for the LFR challenge [8]

Method FLOPs Params LFW CFP-FP AGEDB30
VarGFaceNet 1.02G 4.9M 99.73% 97.67% 97.5%
MobileFaceNet-1.5 933.3M 2.0M 97.33% 99.71% 97.56%
ShuffleFaceNet-1.5 577.5M 2.6M 97.38% 97.25% 97.31%
ShuffleFaceNet-2.0 1.05G 4.5M 99.62% 97.56% 97.28%
GhostFaceNetV2-1 272.25M 6.88M 99.86% 99.33% 98.62%
EdgeFace1 153.99M 1.77M 99.68% 94.46% 95.72%
MobileFaceFormer2 130.08M 1.38M 99.60% 96.79% 97.69%

Table 1: Lightweight CNN and efficient Hybrid method per-
formance on popular face verification benchmarks, trained
on the MS1M-V3 [11] dataset. Compiled from [17, 1, 15].
1 EdgeFace was trained on WebFace-260M [31] subsets in-
stead of MS1M-V3 [11] under 2 Million parameters. 2 Mo-
bileFaceFormer was trained on CASIA-WebFace, FLOPs
estimated as 2×MAdds reported on the original paper.

verification dataset, its standalone student network demands
higher computational resources at 1.02GFLOPS, winning
the LFR Challenge at ICCV2019.

GhostFaceNet In this proposal [1], the authors leveraged
GhostNetV2 [27], which incorporates long-range DFC at-
tention branches, as their foundation. They introduced mod-
ifications to the GDC layer to generate a distinctive embed-
ding vector, with PReLU as activation. Within the GDC
layer, a 7×7 convolutional layer is followed by batch nor-
malization, with a pointwise layer to reduce dimensionality.
Further layers include flattening, batch normalization, and
a linear activation function, with 512-dimensional embed-
ding vector. In the Squeeze-And-Excitation (SE) module,
the FC layers were replaced with DepthWise convolution
layers, for enhancing discriminability in the SE modules.

3. Vision Transformers (Hybrid) methods

In this section, we discuss ViT-based architectures. Re-
sults for these methods for FR are also shown in Table 1.
Figure 1 shows efficient self-attention designs.

Vision Transformer (ViT) In the original ViT paper [14],
the authors propose to mimic attention mechanisms present
in NLP models such as self-attention with image patches,
imitating tokens present in text representation. This is pro-
cessed with a transformer encoder with a Multilayer Percep-
tron (MLP) head, similar to other sequence models. They
reported performance gains on image recognition and ob-
ject detection tasks with interpretable results with the at-
tention maps. However, the most glaring limitation is the
self-attention mapping calculation with a O(n2) complex-
ity, as it is defined for all the correspondences with the patch
tokens in the Key matrix.



Figure 1: Efficient self-attention designs, taken from [25]. (a) ViT [14] Self-Attention, (b) EdgeFace Transposed Self-
Attention [10], (c) MobileViT V2 Separable Self-attention [22], and (d) SwiftFormer’s [25] Efficient Additive Attention.

MobileViTs In MobileViT(V1) [21], the authors employ
strided 3×3 standard convolutions, akin to MobileNetV2
[24] with the Swish [23] activation function. The Mo-
bileViT block is designed with three MobileNetV2 (MV2)
blocks, used for downsampling. The feature map undergoes
an unfolding process before engaging with the transformer
layer, followed by a re-folding step, subsequently merged
with long-range attention branches. Remarkably, spatial
properties akin to regular convolutional layers are preserved
within the transformer encoding layer, as highlighted by the
authors.

In MobileViT V2 [22], the authors also proposed a Sep-
arable Self-attention module, which alleviates the taxing
self-attention process with computing single-vector softmax
attention layers for the Query and Key matrices and broad-
casted element-wise multiplications with the Value matrix.
This reduces the process to a linear O(n) complexity.

EdgeFace This method [10] is tailored for FR, based on
the EdgeNeXT [18] hybrid architecture, and submitted for
the EFaR 2023 Efficient Face Recognition Challenge [15] at
IJCB 2023. This solution was evaluated as the best overall
result across diverse benchmarks, under 2 Million param-
eters. The authors propose to use a standard embedding
encoding block (head) comprised of a GAP layer, Normal-
ization, Dropout, and a novel Low Rank Linear (LoRaLin)
to compute a 512-Dimensional embedding. The LoRaLin
layer helps to reduce computational costs while maintain-
ing high accuracy performance and is used to replace reg-
ular Linear layers. LoRaLin factorizes a feature map into
two separate layers depending on a rank-ratio hyperparam-
eter for balancing computational performance. The Gaus-
sian Error Linear Unit (GELU) [12] activation function is
employed, as well as the transposed self-attention Query
matrix to the channel dimension for further reducing opera-
tions to a linear order with respect to the number of tokens.

SwiftFormer In this approach [25], the authors propose
to use an Efficient Additive Addition in the self-attention
module. This makes the query matrix comprised of learn-
able vectors which are then pooled and added to produce
the global context. This helps to use the Key matrix only for
learning the global context and leave out the Value matrix
entirely from the calculations. The rest of the architecture is
comprised of convolutional encoders using 3×3 DepthWise
convolutions, normalization, a pointwise convolution, and
the GELU [12] activation, with another pointwise convolu-
tion and a residual connection at the end. The encoder uses
the local representation encoding with a DepthWise con-
volution and a pointwise convolution before the Efficient
Additive Attention module with spatial downsizing.

4. Binary Neural Networks tested on FR sce-
narios

Here, we explore BNN architectures and their evaluation
in the FR context. We report efficiency on the Nvidia Jetson
Nano platform and accuracy results on Table 2.

BinaryDenseNet In this approach [3], the authors avoid
complex quantization schemes. Instead, they propose spe-
cialized design principles for BNNs, emphasizing a rich
information flow, eliminating bottleneck structures, and
proposing new block designs different from full-precision
CNNs. Changes to the DenseNet bottleneck block involve
replacing a convolutional layer with two layers with a re-
duced spatial size, while the DenseNet transition block sees
an increased reduction rate for a lighter depth-channel rep-
resentation. This design enhances efficiency by removing
pointwise convolutions, reducing channels in residual con-
nections, and introducing extra shortcuts not present in the
original DenseNet architecture. Representation downsam-
pling is streamlined through a block with max pooling, the



Method 1-bit 32-bit Mem. Params Time FPS LFW CFP-FP AGEDB-30
MACs MACs (MB) (img/sec)

BinaryDenseNet45 [3, 17] 1.59G 59.7M 4.2 13.1M 6.2s 0.16 99.28% 92.88% 91.03%
BinaryDenseNet37 [3, 17] 1.12G 48.9M 2.6 8.0M 4.4s 0.22 99.17% 92.59% 90.72%
BinaryDenseNet28 [3, 17] 893.2M 49.99M 1.8 4.5M 3.7s 0.27 99.17% 92.11% 90.72%
QuickNet [2, 17] 431.7M 6.8M 2.21 12.7M 1.8s 0.55 98.97% 92.00% 89.00%
QuicNet-small [2] 258.3M 3.4M 2.0 12.1M 1.1s 0.86 98.55% 90.65% 88.00%
BinaryFaceNet [17] 184.9M 3.8M 1.3 506K 0.16s 6.25 95.07% 77.93% 75.12%

Table 2: Efficiency and face verification accuracy results tested on popular face recognition benchmarks, expanded from [17].
The inference runtime efficiency was tested on a single ARM core of an Nvidia Jetson Nano.

QuickNet This method [2] also leverages Quantized
DepthWise Convolutions, ReLU activations, Global Aver-
age Polling, and a 512-D face descriptor. The representation
is spatially downsampled and with a low-dimensity channel
expansion, ultimately expanding to 512 channels. Merg-
ing max pooling and Quantized DepthWise Convolutions
provides an efficient reduction. Unlike Lightweight CNNs,
QuickNet avoids depth channel fluctuations seen in Mobile-
FaceNet and VarGFaceNet. The transition block utilizes a
DepthWise convolution for downsampling, with ReLU ac-
tivation at a floating-point level.

BinaryFaceNet In this method [17], the authors heav-
ily reduce computation requirements by reducing the infor-
mation degradation of heavy quantization by adding most
of the computations using Grouped Convolutions in the
Squeeze-And-Excitation block present in the first layers,
while streamlining the rest of the feature extraction blocks
with Quantized Separable Convolutions and aggregating
separate skip connections at different points of the network.
The authors also adopt the PReLU activations present in
Lightweight CNN approaches for FR with the DoReFa [30]
quantizer. This proposal achieves a remarkable efficiency,
with 506K parameters only in the architecture design.

5. Methodology and results
In this work, we show results using state-of-the-art train-

ing methodologies, such as training from scratch using the
SGD optimizer using the ArcFace loss function [7]. In
all the reported results, training was performed using the
MS1M-V3 dataset [11], except for EdgeFace in Table 1. For
including QuickNet-small, we used the same training set-
tings as [17]. We note that GhostFaceNet performs the best
in the AGEDB-30 benchmark, usually the harder scenario
between the three although with 3× more parameters than
EdgeFace. For the efficiency part, BinaryFaceNet shows a
remarkable efficiency performance in comparison with the
rest of the selected BNNs, with less of 13% of verification
accuracy penalty on the AGEDB-30 benchmark [8] against
QuickNet-small. Furthermore, this design is the only one

enabling face verification in real-time (6.25 FPS) in this ex-
tremely constrained scenario using the Larq Compute En-
gine [2] for Binarization.

6. Discussion and Conclusion
As shown in this research work, the potential avenues for

studying and improving BNN methods for FR scenarios in
this context include:

• Self-attention mechanisms on BNNs: the efficiency
improvements present in separate [22] and additive
[25] attention present an opportunity for implement-
ing such mechanisms in BNN blocks and potentially
coupling them with quantization capabilities.

• Knowledge Distillation: this training methodology
[26, 29] could drastically improve FR performance
across different scenarios by using a Transformer ar-
chitecture as teacher and a design such as Binary-
FaceNet as student, for highly-efficient and accurate
FR.

• Privacy-preservation analysis on Quantized ap-
proaches for FR: with more focus on privacy-
preserving computations for mitigating gradient
leakage and protecting user privacy, binarization has
proved to be a useful tool in general-purpose scenarios
[9] but still further privacy analyses can be performed
and are paramount for the adoption of mainstream AI
technology for FR scenarios.

In this work, we explored the avenues of extremely effi-
cient and highly-accurate Face Recognition, delving deeply
into the architecture designs and evaluating their perfor-
mance in FR and efficient hardware scenarios. Further-
more, we provided a discussion on leveraging the strengths
of these approaches together and proposed research direc-
tions for real-world implementations of BNN technology in
heavily constrained embedded scenarios.
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