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Introduction

• Context: Efficient Face Recognition
(FR) is a key challenge in Computer
Vision, prompting the exploration of
strategies that balance accuracy and
computational resources. In this
work, we propose "SwiftFaceFormer", a
hybrid model combining lightweight
CNNs with Vision Transformers, tailored
for efficient and accurate face recognition.

• Motivation: Finding an adequate
balance between computational efficiency
and face recognition accuracy is
challenging. Our work addresses finding
this gap by adapting the
SwiftFormer framework
specifically for face recognition,
and optimizing it for real-time
performance on embedded devices.

• Goal: To improve and explore efficiency
on Hybrid-based methods through Swift-
FaceFormer. Enhance efficiency perfor-
mance through strategic modifications and
compensate accuracy with Knowledge Dis-
tillation, achieving a very low latency and
with competitive accuracy on face recog-
nition benchmarks. We specifically focus
on efficient and accurate FR scenarios be-
ing available on extremely hardware-
constrained platforms, such as the
Nvidia Jetson Nano.

SwiftFaceFormer approach

• Face recognition head: We set the
full embedding channel dimension directly
after Stage 4 of the SwiftFormer
architecture. We adjust the output
channels the predefined face embedding
dimension C using a Global DepthWise
Convolution (GDC) after an efficient 1×1
point-wise convolution to reduce to the
final 512×1×1 embedding size. Finally,
we apply another point-wise convolution
and a batch normalization step.

• SwiftFaceFormer-XXS: We introduce
a more efficient variant using an Efficient
Convolutional Encoder with a decending
group strategy per SwiftFormer stage and
optimized depth d and width w
configurations. This allows to have a
strong balance between computational
efficiency and limited accuracy
compromises.

• Hard Sample Knowledge
Distillation: We achieve competitive
results using our XXS variant as student
with our L3 variant as teacher, on
popular FR benchmarks .

SwiftFaceFormer-XXS

Figure: Efficient Conv. Encoder in SwiftFaceFormer-XXS. We employ Grouped Point-Wise Convolutions only
at the last layer for maximizing efficiency and mitigating accuracy penalties.

Figure: SwiftFaceFormer-XXS overall architecture. Consistent with the original SwiftFormer notation for the
stages, the complexity is expressed as depth d for the number of encoding operations and width w for the
number of feature map channels. C denotes the embedding channel dimension for our face recognition
head.

Ablation study on CNNs and Hybrid methods

Method Params. FLOPs LFW CFP-FP AgeDB-30 CALFW CPLFW IJB-B IJB-C
(M) (M) (%) (%) (%) (%) (%) (%)

MixFaceNet-M 3.9 626.1 99.68 - 97.05 - - 91.55 93.42
MixFaceNet-S 3.1 451.7 99.60 - 96.63 - - 90.17 92.30
ShuffleFaceNet 2.6 577.5 99.67 97.26 97.32 95.05 88.50 92.25 94.30
MobileFaceNet 2.0 933.3 99.70 96.90 97.60 95.20 89.22 92.83 94.70
PocketNetM-128-KD 1.7 1,099 99.65 95.07 96.78 95.67 90.00 90.63 92.63
MixFaceNet-XS 1.0 161.9 99.60 - 95.85 - - 88.48 90.73
PocketNetS-128 0.9 587.1 99.50 93.78 95.88 95.01 88.93 88.29 90.79
PocketNetS-128-KD 0.9 587.1 99.55 93.82 96.50 95.15 89.13 89.23 91.47
HOTformer-Net (base) - 1,301 99.70 97.80 97.60 96.00 91.90 93.80 95.50
HOTformer-Net (small) - 765 99.70 96.50 96.90 95.60 91.10 92.50 94.50
EdgeFace-S 3.7 306.1 99.78 95.81 96.93 95.71 92.56 93.58 95.63
EdgeFace-XS 1.8 154 99.73 94.37 96.00 95.28 91.82 92.67 94.85
CFormerFaceNet 1.7 40.0 99.73 95.06 97.12 95.80 90.20 - -
MobileFaceFormer 1.4 - 99.60 96.79 97.69 95.98 98.43 - -
SwiftFaceFormer-L3 28.0 2,015.6 99.75 97.80 97.55 96.03 90.70 92.92 94.70
SwiftFaceFormer-L1 11.8 804.6 99.68 96.61 96.95 95.80 90.10 91.81 93.82
SwiftFaceFormer-S 6.0 485.2 99.60 96.49 96.83 95.78 90.00 91.56 93.54
SwiftFaceFormer-XS 3.4 293.7 99.60 95.47 96.35 95.35 88.65 90.20 92.32
SwiftFaceFormer-XXS-KD 1.5 64.1 99.43 92.50 94.82 94.78 86.97 87.81 90.28
Table: State-of-the-art CNN and Hybrid models on popular FR benchmarks for less than 4M parameters. The
IJB-B and IJB-C columns correspond to the verification TAR at FAR=1e-4 on the IJB-B and IJB-C datasets,
while the rest show verification accuracy (%).

Efficiency assessment

Method Latency FPS Params FLOPs Avg. FR Acc. per
(ms) throughput (M) (M) Acc. (%) latency (%/ms)

SwiftFaceFormer-L3 36.9 27.1 28.0 2,015.6 95.6 2.6
SwiftFaceFormer-L1 18.0 55.3 11.8 804.6 95.0 5.3
SwiftFaceFormer-S 12.8 77.7 6.0 485.2 94.8 7.4
SwiftFaceFormer-XS 9.1 109.6 3.4 293.7 94.0 10.3
SwiftFaceFormer-XXS-KD 4.6 215.5 1.5 64.1 92.4 20.1

Table: Efficiency metrics tested on the Nvidia Jetson Nano platform. Our XXS-KD variant shows remarkable
efficiency performance across all metrics.

Discussion

• Efficiency performance: We note
that our SwiftFaceFormerXXS-KD
exhibits the lowest latency and the
highest FPS among our variants.
More critically, in our "Accuracy per
latency" score, we note a huge
improvement of Accuracy per latency
points with the XXS-KD variant,
demonstrating its feasibility for usage
on real-time hardware-constrained
deployments. With respect to the
state of the art, this variant also
outperforms the every other network
in at least one efficiency metric (if
more than one reported).

• On accuracy performance: Our
SwiftFaceFormer-XS and
SwiftFaceFormer-XXS-KD models,
demonstrate promising results on the
evaluated benchmarks, with XS
obtaining as good verification results
as the hybrid EdgeFace-S model and
the lightweight MixFaceNet-S CNN
model. Also, it is able to achieve
competitive against ResNet18- Q8-bit
which has more complexity
requirements. KD allows us to
enhance the performance of our
compact SwiftFaceFormer-XXS
model, offering a good trade-off
between efficiency and accuracy for
deploying it in limited-resource
devices.
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