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Introduction

• Context: Efficient Face Recognition
(FR) is a key challenge in Computer
Vision, prompting the exploration of
strategies that balance accuracy and
computational resources. In this work,
we conduct a thorough comparative
analysis of three modern approaches for
FR: Lightweight Convolutional Neural
Networks (CNNs), Vision Transformers
(ViTs), and Binary Neural Networks
(BNNs).
Motivation: To enhance effi-
ciency for real-time scenarios on em-
bedded devices, we investigate BNNs,
utilizing binary weights and quantiza-
tion techniques to reduce memory and
computation requirements. We also ex-
plore Lightweight CNN and ViT-based
approaches on FR scenarios, with the
potential for global context comprehen-
sion using self-attention mechanisms
for improving accuracy.
Goal: To suggest concrete refine-
ments that could be present in BNN
designs for harnessing the recent
progress of these three modern av-
enues. We specifically focus on effi-
cient and accurate FR scenarios being
available on extremely hardware-
constrained platforms, such as the
Nvidia Jetson Nano.

On Quantization and
Binarization

• State of the art Quantization:
Quantization analyses in the state of
the art are limited to 16 and 8-bit
computations for FR applications.

• Challenges on Binarization:
Extreme quantization, also known as
Binarization, using 1-bit neural
networks, offers potential efficiency
benefits but faces challenges including
information loss, computation
stability, and achieving real-time
performance on affordable hardware.

• Recent efforts using
Binarization on FR: Newer
methods, such as BinaryFaceNet,
show a remarkable efficiency
performance with less than 13% of
verification accuracy penalty on the
AGEDB-30 benchmark against the
state of the art. This design is the
only one enabling face verification in
real-time (6.25 FPS) on a single ARM
core of an Nvidia Jetson Nano using
the Larq Compute Engine framework.

Vision Transformer Efficiency vs Accuracy on ImageNet

Figure: Modern ViT and Lightweight CNN designs benchmarked on ImageNet against inference
time latency, taken from the SwiftFormer paper. We note that SwiftFormer reports the best
accuracy-to-efficiency trade-off, showing potential for FR applications.

Figure: Efficient self-attention designs, taken from the SwiftFormer paper. (a) ViT Self-Attention,
(b) EdgeFace Transposed Self-Attention, (c)MobileViT V2 Separable Self-attention, and (d)
SwiftFormer’s Efficient Additive Attention.

FR-specific methods with Lightweight CNNs & ViTs

Method Type FLOPs Params LFW CFP-FP AGEDB-30
VarGFaceNet L.CNN 1.02G 4.9M 99.73% 97.67% 97.5%
MobileFaceNet-1.5 L.CNN 933.3M 2.0M 97.33% 99.71% 97.56%
ShuffleFaceNet-1.5 L.CNN 577.5M 2.6M 97.38% 97.25% 97.31%
ShuffleFaceNet-2.0 L.CNN 1.05G 4.5M 99.62% 97.56% 97.28%
GhostFaceNetV2-1 L.CNN 272.25M 6.88M 99.86% 99.33% 98.62%
EdgeFace1 Hybrid 153.99M 1.77M 99.68% 94.46% 95.72%
MobileFaceFormer2 Hybrid 130.08M 1.38M 99.60% 96.79% 97.69%

Table: Lightweight CNN and efficient Hybrid method performance on popular face verification
benchmarks, trained on the MS1M-V3 dataset.
1EdgeFace was trained on WebFace-260M.
2 MobileFaceFormer was trained on CASIA-WebFace, FLOPs estimated as 2×MAdds reported on the
original paper.

BNN Accuracy on FR and Efficiency Evaluations

Method 1-bit 32-bit Mem. Params Time FPS LFW CFP-FP AGEDB-30
MACs MACs (MB) (img/sec)

BinaryDenseNet45 1.59G 59.7M 4.2 13.1M 6.2s 0.16 99.28% 92.88% 91.03%
BinaryDenseNet37 1.12G 48.9M 2.6 8.0M 4.4s 0.22 99.17% 92.59% 90.72%
BinaryDenseNet28 893.2M 49.99M 1.8 4.5M 3.7s 0.27 99.17% 92.11% 90.72%
QuickNet 431.7M 6.8M 2.21 12.7M 1.8s 0.55 98.97% 92.00% 89.00%
QuicNet-small 258.3M 3.4M 2.0 12.1M 1.1s 0.86 98.55% 90.65% 88.00%
BinaryFaceNet 184.9M 3.8M 1.3 506K 0.16s 6.25 95.07% 77.93% 75.12%

Table: Efficiency and face verification accuracy results tested on popular face recognition
benchmarks. The inference runtime efficiency was tested on a single ARM core of an Nvidia Jetson
Nano. All BNNs were trained on the MS1M-V3 dataset.

Research directions

• Further ViT-based
architecture analysis on FR:
Newer ViT-based methods, such as
SwiftFormer, have the potential for
improving results on FR
benchmarks, based on their
reported results on ImageNet
performance, while also enhancing
efficiency.

• Self-attention mechanisms
on BNNs: the efficiency
improvements present in separate
and additive attention present an
opportunity for implementing such
mechanisms in BNN blocks and
potentially coupling them with
quantization capabilities.

• Knowledge Distillation: this
training methodology could
drastically improve FR performance
across different scenarios by using a
Transformer architecture as teacher
and a design such as
BinaryFaceNet as student, for
highly-efficient and accurate FR.

• Privacy-preservation analysis
on Quantized approaches for
FR: with more focus on
privacy-preserving computations for
mitigating gradient leakage and
protecting user privacy, binarization
has proved to be a useful tool in
general-purpose scenarios but
further privacy analyses can be
performed and are paramount for
the adoption of mainstream AI
technology for FR scenarios.

More on Face Recognition
through Binarization
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