Identity-Preserving Aging and De-Aging of Faces
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Introduction

e Context: Face-age synthesis is
relevant to forensics and cross-age
face recognition, yet most
GAN/Diffusion methods have heavy data

and computing requirements.

e Motivation: Current methods lack age
synthesis control and not always
ensure identity (ID) is preserved after
age editing, while also being expensive
and complex to train.

e GGoal: To efficiently and effectively
synthesize aged and de-aged faces by
finding an “age direction” in the
StyleGAN space, improving identity
preservation via feature selection, and
providing specific steps to age in years.

Key contributions

e Efficiency: Light requirements on
data and computing resources for face
aging and de-aging.

e Improve on ID Preservation:

feature selection by comparing
PCA /LDA reconstructions.

e Synthesizing to a specific age:
provide specific latent space offsets to
age and de-age subjects.

e Dataset and evaluation code:
Release of a fully synthetic dataset
with 20k IDs x 11 age variations and
age synthesis evaluation toolset.

Method Overview

1. Moving along age direction. Ex-
tending [1], use a Linear SVR to fit Style-
GAN2 latent vectors w — y true age label,

find age direction A through SVR coeflicients
(A), and move latent vector using scalar s:

Fq. 1 w' = w4+ s\

2. Constrain change in latent com-
ponents. Use element-wise mask ¢ to
constrain the movement of select compo-
nents, computed by comparing reconstruc-
tions from PCA and LDA spaces using la-
beled datasets on ID and age:

Eq. 2 w' =w+ (PO s\

O w’ outside Identity space

. w’ inside ldentity space

Figure: Aged latent v’ inside ID region using Eq. 2.

3. Map scalar s— y age. Compute
compute scalar offset As for a specific age
using polynomial fittings per age group.

in the StyleGAN Latent Space
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Aging and de-aging to specific years
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Figure: Young adult sample projected to the latent space (middle column) and controlled transformations
for de-aging (left column) and aging (right column). The bottom row serves as real-world reference for the

synthesized subjects.
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Figure: Left: Young adult sample projected to the latent space (middle column) and controlled
transformations for de-aging and aging. De-aging a young adult sample from their latent space projection

Real-world reterence
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Real-world reterence
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De-aged (-26 years) 4—— De-aged (-10 years) €4——— Projection from original

Original sample
Age 35

by 10 years and 26 years . The real-world references are present in the bottom row.

younger

Figure: Samples from fully synthetic dataset generated. IDs generated using Langevin sampling [2] and

Fully synthetic aged dataset

ID generated

linear approach for aging and de-aging the synthetic identities.
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Experimental Setup

e Datasets: Train and test partiions of

UTKFace (age), train partition of Color
FERET (identity).

e Age estimation and face
recognition: MobileNetV2 age

estimator; EdgeFace-S face recognition
backbone calibrated on IJBC.

ID preservation and age
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Figure: Age gain per number of samples verified for
the children age group. LDA reconstruction metrics
for MSE, Covariance, and Wasserstein distance.
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Figure: Age gain for young adults per number of
samples verified. MSE, Covariance, and
Wasserstein distance used for LDA reconstructions.
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