Identity-Preserving Aging and De-Aging of Faces in the StyleGAN Latent Space

Luis S. Luevano, Pavel Korshunov, and Sébastien Marcel Idiap Research Institute

Introduction

- Context: Face-age synthesis is relevant to forensics and cross-age face recognition, yet most GAN/Diffusion methods have heavy data and computing requirements.
- Motivation: Current methods lack age synthesis control and not always ensure identity (ID) is preserved after age editing, while also being expensive and complex to train.
- Goal: To efficiently and effectively synthesize aged and de-aged faces by finding an "age direction" in the StyleGAN space, improving identity preservation via feature selection, and providing specific steps to age in years.

Key contributions

- Efficiency: Light requirements on data and computing resources for face aging and de-aging.
- Improve on ID Preservation: feature selection by comparing PCA/LDA reconstructions.
- Synthesizing to a specific age: provide specific latent space offsets to age and de-age subjects.
- Dataset and evaluation code:
 Release of a fully synthetic dataset
 with 20k IDs × 11 age variations and
 age synthesis evaluation toolset.

Method Overview

1. Moving along age direction. Extending [1], use a Linear SVR to fit Style-GAN2 latent vectors $w \to y$ true age label, find age direction $\hat{\lambda}$ through SVR coefficients (λ) , and move latent vector using scalar s:

Eq. 1
$$w' = w + s \hat{\lambda}$$

2. Constrain change in latent components. Use element-wise mask Φ to constrain the movement of select components, computed by comparing reconstructions from PCA and LDA spaces using labeled datasets on ID and age:

Figure: Aged latent w' inside ID region using Eq. 2. 3. Map scalar $s \mapsto y$ age. Compute compute scalar offset Δs for a specific age using polynomial fittings per age group.

Aging and de-aging to specific years

Figure: Young adult sample projected to the latent space (middle column) and controlled transformations for de-aging (left column) and aging (right column). The bottom row serves as real-world reference for the synthesized subjects.

Figure: Left: Young adult sample projected to the latent space (middle column) and controlled transformations for de-aging and aging. De-aging a young adult sample from their latent space projection by 10 years and 26 years. The real-world references are present in the bottom row.

Fully synthetic aged dataset

Figure: Samples from fully synthetic dataset generated. IDs generated using Langevin sampling [2] and linear approach for aging and de-aging the synthetic identities.

Experimental Setup

- **Datasets**: Train and test partitions of UTKFace (age), train partition of Color FERET (identity).
- Age estimation and face recognition: MobileNetV2 age estimator; EdgeFace-S face recognition backbone calibrated on IJBC.

ID preservation and age

Figure: Age gain per number of samples verified for the children age group. LDA reconstruction metrics for MSE, Covariance, and Wasserstein distance.

Figure: Age gain for young adults per number of samples verified. MSE, Covariance, and Wasserstein distance used for LDA reconstructions.

Selected references

[1] Colbois, L. et al. On the use of automatically generated synthetic image datasets for benchmarking face recognition. In 2021 IEEE International Joint Conference on Biometrics (IJCB), IEEE Press, 2021.

[2] Geissbühler, D. et al. Face datasets generation via latent space exploration from brownian identity diffusion. In Proceedings of the 42nd International Conference on Machine Learning (ICML) (to appear). PMLR, 2025