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Abstract

Face aging or de-aging with generative Al has gained
significant attention for its applications in such fields like
forensics, security, and media. However, most state of
the art methods rely on conditional Generative Adversarial
Networks (GANs), Diffusion-based models, or Visual Lan-
guage Models (VLMs) to age or de-age faces based on pre-
defined age categories and conditioning via loss functions,
fine-tuning, or text prompts. The reliance on such condition-
ing leads to complex training requirements, increased data
needs, and challenges in generating consistent results. Ad-
ditionally, identity preservation is rarely taken into account
or evaluated on a single face recognition system without
any control or guarantees on whether identity would be pre-
served in a generated aged/de-aged face. In this paper, we
propose to synthesize aged and de-aged faces via editing la-
tent space of StyleGAN?2 using a simple support vector mod-
eling of aging/de-aging direction and several feature selec-
tion approaches. By using two state-of-the-art face recog-
nition systems, we empirically find the identity preserving
subspace within the StyleGAN2 latent space, so that an ap-
parent age of a given face can changed while preserving
the identity. We then propose a simple yet practical formula
for estimating the limits on aging/de-aging parameters that
ensures identity preservation for a given input face. Using
our method and estimated parameters we have generated a
public dataset of synthetic faces at different ages that can
be used for benchmarking cross-age face recognition, age
assurance systems, or systems for detection of synthetic im-
ages. Our code and dataset are available at the project page
https://www.idiap.ch/paper/agesynth/

1. Introduction

Face image synthesis has seen substantial advancements
in recent years, driven by breakthroughs in generative mod-
els like Generative Adversarial Networks (GANs) [16, 21].
Applications for face image synthesis scenarios include face
aging and de-aging, strengthening face [28] and age [26]

younger ID generated older

Figure 1. Samples from fully synthetic dataset generated. IDs gen-

erated using Langevin sampling [ 13] and linear approach for aging
and de-aging the synthetic identities.

verification systems against physical [24, 30] and digi-
tal [23, 29] spoofing attacks, mitigating bias of face recog-
nition (FR) systems across different age groups [25], and
improving robustness of cross-age face recognition. In par-
ticular, these methods can be used to modify a person’s face
appearance to an arbitrary age while retaining their identity,
allowing us to generate younger and older looking versions
of the same subject. State of the art approaches typically
employ Conditional GANSs [3] or Diffusion models [5] that
condition the face transformation on a specific target age
group, producing realistic results at the expense of sacrific-
ing controllability, involving complex training procedures,
extensive computing resources, and requiring large amounts
of labeled data for fine tuning.

When faces are synthetically projected aged or de-aged,
it is difficult to preserve identity, which is essential in appli-
cations where age transformation must retain enough dis-
tinctive features for accurate recognition purposes. While
some face aging methods incorporate identity consistency
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Figure 2. UTKFace sample re-projections from different age groups showing variation in estimated age and FR score from the cosine
distance of the EdgeFace embedding to the real-world reference. The column with blue background shows the re-projection without
aging/de-aging, the aged/de-aged faces over green are verified against the original, while those over red are rejected.

losses [34] or use pre-trained face recognition models [6]
to verify the synthesized face’s identity, most approaches
are limited by their dependence on a single face recogni-
tion model feature space when conditioning GANs [3, 4]
and posterior face verification [34]. This reliance on us-
ing existing face recognition pretrained models can poten-
tially introduce biases, as the preservation of identity may
vary when evaluated using different recognition systems.
As such, it is important to include evaluations using differ-
ent face recognition systems, whereas current age synthe-
sis methods rarely report face recognition accuracy perfor-
mance on more than one system.

In particular, GAN approaches operate in continuous la-
tent spaces and lack predefined steps or directions to rep-
resent a person’s age, making them challenging to navigate
effectively for cross-age synthesis while preserving identity.
In this work, we address this gap by conducting targeted ex-
periments in the StyleGAN2 [22] latent space, a GAN vari-

ant popular for its ability to represent style-based attributes,
to identify a global “age synthesis direction”, examining the
extent to which identity can be preserved across different
age groups. We further enhance identity retention by se-
lecting relevant features, both with and without explicit age
or face recognition labels. Furthermore, we generate and
release a fully synthetic dataset using face age synthesis ap-
proach and synthetic identity sampling, illustrated in Figure
1.

Concretely, in this work we review the current state
of face age synthesis research and propose a simple data-
efficient strategy that operates within the StyleGAN2 W la-
tent space. We explore the challenges of navigating this
space while maintaining robust face verification perfor-
mance (as shown in Figure 2) using a linear approach for
age synthesis and improve identity retention by employ-
ing various feature selection mechanisms, including com-
parisons using reconstructions from Principal Component



Analysis (PCA) and Linear Discriminant Analysis (LDA)
subspaces given the original projected datasets in the la-
tent space. Unlike conventional methods that rely on condi-
tioning GANS, our approach leverages the readily-available
StyleGAN?2 structured and rich latent space for straightfor-
ward edits that achieve both aging and de-aging without re-
training GAN encoders and decoders. We assess how differ-
ent feature selection approaches, particularly those empha-
sizing age and identity components, affect identity preser-
vation when using the selected components in latent space
manipulations. We then map the relationship between ap-
parent age, StyleGAN2 scalar step, and assess the identity
preservation bounds via curve fitting and root analysis to
propose a more practical approach for synthesizing specific
ages using this latent space. Finally, we generate a fully
synthetic public dataset' with aged face images by apply-
ing the aging approach on synthetically generated identities
with Langevin sampling [13].
This paper has the following contributions:

1. We provide a baseline streamlined and data-efficient
approach to face age synthesis using latent editing
within StyleGAN2, reducing the need for conditioning
networks and extensive labeled datasets by extending
linear approaches using Support Vector Regression.

2. We propose different feature selection strategies and
evaluate them using the latents from the StyleGAN
space, including reconstruction approaches based on
Principal Component Analysis (PCA) and Linear Dis-
criminant Analysis (LDA), that effectively improve
identity preservation and apparent age synthesis within
the StyleGAN?2 latent space.

3. We propose a set of specific experiments and visu-
alization techniques to analyze the extent of identity
preservation within the StyleGAN?2 latent space across
age modifications, identifying thresholds where iden-
tity starts to degrade.

4. We release a practical toolset! for synthesizing faces
to a specific age with our findings: linear age direc-
tion, weights of W components, fitted curves per age
group, and code for finding the corresponding Style-
GAN?2 scalar step.

5. We generate and release a synthetically generated
dataset' using our approach with 20k identities and
10 age variations per identity, providing replicability,
and addressing privacy concerns over the sensitivity of
cross-age data availability.

The paper is organized as follows: Section 2 describes
the related work for face age synthesis methods, Section 3

ICode and dataset available at the project page:
https://www.idiap.ch/paper/agesynth/

details approach for efficient controlled latent editing and
feature selection, Section 4 shows our experimental setup,
in Section 5 we present the experiment results, and we con-
clude in Section 6.

2. Related work

In this section we present related methods on face age
synthesis, for Deep Learning-based approaches. It is possi-
ble to classify these methods on those based on Translation,
Sequences, Conditions, and Style [1, 20].

Translation-based methods. These approaches use GAN
methods to age faces by training generators to address con-
sistency among specific age gaps. The authors of F-GAN
[33] propose to use CycleGAN [39] losses and face age
estimators to improve synthesis between smaller gaps in
age groups. E2E-CycleGAN [36] trains using edge maps
and generates them before synthesizing the textures, help-
ing preserve geometry. FA-CGAN [4] uses the CycleGAN
backbone and with additional convolutional blocks, an al-
ternative discriminator, and multi-scale feature fusion to im-
prove face image quality including fine details such as wrin-
kles.

These approaches show limitations because they must
train multiple generator—discriminators with pairs for ev-
ery age gap, while relying on cycle and identity losses that
depend on face recognition backbones. They also rely on
training specific pairs of generators for aging and de-aging
predetermined age gaps, becoming computationally expen-
sive to age or de-age outside of these age groups, requiring
additional generators.

Sequence-based methods. These methods decompose
the age gaps into a sequence of incremental ag-
ing steps.  Recurrent Face Aging (RFA) [35] uses
optical-flow-normalized eigenfaces as input and trains
Gated Recurrent Unit (GRUs) to model long and short-term
dynamics of aging, transferring high-frequency details from
each group’s nearest neighbors. Triple-GAN [12] aligns
three simultaneous translation paths with a “triple” loss so
that the generated faces along the different paths converge
to the same target age. PFA-GAN [19] divides the generator
itself into gated sub-networks, each tuned to a narrow age
span, yielding smoother trajectories and mitigating ghosting
artifacts.

Shortcomings of these approaches include cases when
we attempt to synthesize over large age gaps, such as error
accumulation and an increase in complexity due to the chain
of generators. Furthermore, it is not possible to synthesize
other age gaps different from those contemplated at training
time.
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Conditional-based methods. Conditional GANs use the
desired age label as input for the generator and discrim-
inator. Age-CGAN [3] searches the latent space with
identity-preserving optimisation so that FaceNet embed-
dings stay close while the age code changes. IPC-
GAN [34] adds perceptual, age-classification, and iden-
tity preservation losses at training time. Other meth-
ods, such as ChildFace [8], AW-GAN [6], and AgeTrans-
GAN [18] strengthen detail using coarse-to-fine genera-
tors, wavelet-domain critics, and multitask discriminators,
respectively. In ChildGAN [7], the authors train separate
StyleGAN?2 instances per gender and perform logistic re-
gression in the latent space for attribute augmentation.

These methods show limitations in their dependence on
explicit target age labels at train time and test time. They
also need large and accurately annotated age datasets and
employ complex conditioning pipelines for synthesizing
multiple attributes such as age, gender, or pose. Their iden-
tity preservation mechanisms also rely heavily on a single
recognition model embedded in the loss, potentially limit-
ing the usability of the output to a particular face recogni-
tion backbone.

Style-based methods. These approaches shift the focus
from re-training to navigating an already expressive latent
space. SAM [2] places a head for age regression on top
of StyleGAN2 and back propagates the regression gradient
to the W projection modules, regularized by identity and
cycle constraints. FAM [10] directly manipulates FaceNet
features before re-synthesising the image. Other methods
include IricGAN [32], which uses multi-scale attribute re-
gression, and DyStyle [27], comprised of dynamic expert
modules selected per attribute. HDA-SynChildFaces [11]
employs multiple SVM hyper-planes in the latent space to
generate a large dataset focused on children faces only. Dif-
fusion models for aging faces, such as [5], use text prompts
and labels as input to the method, delegating the text-to-
image translation task to cross-modal alignment methods,
thus sacrificing controllability.

Even though these approaches are based on latent edit-
ing, the training process is often made more complex by
re-training the generator, adding extra networks at training
time, introducing complex training losses, and finding la-
tent directions using multiple SVMs. Furthermore, these
approaches do not attempt to explore which latent compo-
nents meaningfully affect age or identity, which may also
introduce artifacts and undesired identity changes. In this
paper, we address these shortcomings by using the readily-
available StyleGAN2 generator without re-training or train-
ing additional convolutional modules, finding a single latent
direction with little amount of training data, and improv-
ing identity preservation by selecting relevant latent vector
components to age and identity.

3. Editing in the StyleGAN latent space

In this section, we will detail the method for latent anal-
ysis, latent edits, and feature selection.

3.1. Latent analysis and linear latent editing

The latent analysis approach is an extension of the
method from [9], which begins by projecting real face im-
ages from the image space into the W 512-d dimensional
latent space of StyleGAN2, where the w latent vectors are
used for age attribute analysis and editing. We extend the
approach in [9] for finding the direction in the latent space
from ‘young’ to ‘old’. Our approach uses a Linear SVR to
fit latents in the StyleGAN2 W space to their original age
labels y € R. Linear SVR fits the hyperplane containing
most of the samples inside its surrounding margin. This hy-
perplane is defined by {y = 67|60, w € RIWI+1} where 0
contains the hyperplane parameters (bias b and coefficients
\) and @ a latent vector [1 w] in RI"I*! Given that we
have a known latent wy with age value y,, we want to find a
new latent w; reflecting the desired change in age (we want
to age or de-age wp). By projecting the vector 6, used to
predict the y age value, onto the latent vector wgy, we can
find the direction in which the age of wg changes within W
space. We cganormulate Wy, = Wo + cWwy, with ¢ given by

i

Proj,- 6 = 22 After substitution, we have w; as :
wo 00 - W0

w1 = wo + 0
[1wi] =[1wo]+ [bA

With )\ corresponding to the vector changing the compo-
nents of wy in the W space. Finding the direction of A as

A= m, a normalized unit vector, allows us to move wg

to the desired w; by scaling A using scalar multiplication s
as:

w1 = wy + SA (1

By projecting w; into pixel space, we obtain a face of
the person appearing older or younger depending on the
sign of s, which its value represents the number of years.
What remains to be found is the mapping between the val-
ues of scalar s and the number of years by which we want
to age/de-age the person. We are interested in mapping the
changes in age in function of s because obtaining w; from
wy, the y value in years, and the age direction A depends
on moving through a linear hyperplane, whereas the latents
may not correspond linearly to their y age value and their
placement in the latent space may be depending on other
factors, such as the apparent age of the original face.

3.2. Identity preservation in the latent space

When using Eq. 1, we move linearly using all the compo-
nents of the StyleGAN?2 vector in the latent space indiscrim-
inately by multiplying them with the floating-point scalar
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Figure 3. Controlled latent edit approach with identity preserva-
tion in the W space. We age and de-age each sample projection
w using the scaled age direction s, controlled by the rate weight
®, which includes the change in the selected latent vector compo-
nents relevant to identity (yid) and age (page). This re-scales the
change in the age direction, aiding in synthesizing points inside
the identity region of each subject inside the latent space.

step s. We refer to the approach described by Eq. 1 as a lin-
ear baseline approach, since it does not involve any identity
constraints.

We can extend the linear baseline approach by multiply-
ing only a selected subset of the components in the Style-
GAN?2 vector, with the aim to find those components that
contribute the most to the identity and age changes. Hence,
we can modify Eq. 1 to include a ¢ term describing an ad-
ditional weight vector regulating the change per each com-
ponent of the scaled A age direction vector as follows:

w1:w0+<1>®85\ 2)

The ® vector re-scales and re-shapes the region followed
by the synthesized latent vector w; through element-wise
multiplication (®), constraining the magnitude of the di-
rections for different components of the latent vector. We
compute this ¢ vector from selecting features relevant to
age ((page) and identity (jq) from the latent components. In
the linear baseline case, this ® scaling vector represents an
equal change in all the components from X and w. Figure 3
illustrates this approach.

Feature selection. The main goal of feature selection in
this work is to compute ¢ from Eq. 2 to regulate the change
in our latent vector components. We propose multiple ways
of computing ®. In general, we employ PCA and LDA to
assess component importance through sub-space projection
and reconstruction. For this purpose, we use two sets of
standardized latent vectors: one from a dataset with identity
labels (VigX |W‘) (for PCA and LDA) and another one from

a dataset with age group labels (V;’;X ‘Wl), (only for LDA).

Computing ® using PCA. We use the Vj4 set to com-
pute Ppca = @iapca. Firstly, we compute the eigen-
decomposition for aPpcsy = Eig(V,—dVig), with a denoting
the vector of unsorted eigenvalues of the projection basis
Ppca. We calculate the cumulative variance of the largest
eigenvalues and select the component indices correspond-
ing to 95% of variance (opca). We use the selected compo-
nents to directly set the values of the (iq pca mask, since we
found that the most relevant components in the PCA basis
are the same as in the latent space after projection, recon-
struction, and comparison. Consequently, we formulate:

©id-PCA = {pi...p‘w”p = 1lifa; € opca > 95%,0 otherwise}

Computing ¢ using LDA. We find the components im-
portant for identity ¢iq 1 pa using Vig with identity labels and
those important for age as @,ge-1.0a With Ve with age group
labels.

We compute separate LDA bases, aFpa, from the
eigen-decomposition of the product of the scatter matrices
for each set of latents. The magnitude of the eigenvalues in
a represent the ratio of discriminability per class and com-
ponent, which we use to find the most important discrimi-
native components in the basis, leaving those contributing
to 95% discriminability intact. We set the least important
components in P ps as zero vectors, and use this matrix
to project the latents into the sub-space. Using the matrix
pseudoinverse PJDA, we reconstruct the projected latents
from the LDA space back to the latent space to compare
them against the original latents. We denote this reconstruc-
tion V.

Each pair of standardized latents V' and reconstructed la-
tents V'« is used to calculate three different distance metrics
U(V,Vx): Mean Squared Error (MSE), 1-D Wasserstein
distance, and Covariance. We compute the mean per com-
ponent of W(V, V) as 1)!"|. We calculate the mean [y a8
threshold for feature selection. We formulate ¢pps when
using MSE and 1-D Wasserstein as:

©LpA = {pi---piwilp = 1if ¥y < py, 0 otherwise}

and for Covariance as:

©LpA = {pi---piwilp = 1if ¥y > py, 0 otherwise}

We use these formulations to calculate the masks
@ig=Lpa and @aeex1pa corresponding to each different dis-
tance metric. These masks correspond to all the compo-
nents important to identity or age. Hence, we find an over-
lap of the components relevant to both identity and age as:

PidAage = Pid*LDA /\ Page*-LDA

while the components relevant only to age and identity are
formulated as

Page-LDA = Page*-LDA /\ TP+id-LDA
g g



Pid-LDA = ®id*LDA /\ 7{P*age-LDA

Therefore, we can transform the weighting vector ® from
Eq. (2) by including the features selected using LDA as fol-
lows:

P pa = APage-LDA + BPidnage 3)

where the hyperparameters « and 3 are scalars empha-
sizing the specific components that are relevant only for age
and those impacting age and identity at the same time.

When using LDA with the age-labeled dataset, we could
have few age group labels, which could potentially limit the
effect of LDA since it is more suitable for data with larger
number of classes. In our experiments, we therefore applied
LDA with larger number of age classes but did not observe
any impact in the component selection results.

3.3. Estimating scalar steps for specific ages

When we follow Eq. (2) for aging and de-aging, we com-
pute StyleGAN latents and the corresponding images cor-
responding to a discrete small number of scalars s for each
age group. For practical application, we need to know scalar
values for every desired age ¥, we want to generate.

We then fit polynomial models p,.(s), to approximate
pr(s) = y, based on the latents we pre-computed for the
limited number of scalar s. When transforming a person
from an original age Yorigina 10 a desired age Ygesired, WE
select the polynomial curve p, corresponding to the sam-
ple’s age range 7 from Yoriginal. 1o find the original and de-
sired ages in the polynomial curve, Soriginal and Sesired T€-
spectively, we solve for the scalar shifts by computing the
roots of pr(s) — Yoriginal = 0 and pr(s) — Ydesired = 0.
The solutions correspond to the scalar value at that age,
Soriginal and Sgesied- We compute the net scalar offset as
AS = Sdesired — Soriginal. 10 practice, we only keep physi-
cally meaningful solutions by filtering out those outside a
functional scalar range. If a real and unique valid solution
does not exist for computing the scalar using the polyno-
mial curve in a category, we can fall back to simpler linear
fits, separately for the aging and de-aging cases.

4. Experimental setup

In this section, we describe our experiments in terms
of datasets, practical latent editing, features selection, and
evaluation pipeline.

4.1. Datasets
In the experiments, we use UTKFace [37] for the age

analysis and Color FERET [15] for the identity analysis.

UTKFace. This dataset [37] contains samples with age
data ranging from O to 116 years old, with over 20K faces

annotated with age, gender, and ethnicity attributes. We use
only a small portion of images to simulate data-constrained
scenarios. Firstly, we pre-process the images from the
UTKFace dataset using CodeFormer [38] to scale them
up to 2x their original resolution, cropped and aligned to
match the original StyleGAN2 FFHQ images to a resolu-
tion of 1,024 x 1,024 pixels. Next, we take a section of
the upscaled dataset, dividing it into a training set partition
and a testing set partition. The training set consists of 1, 336
samples, where half are younger than 18, and the other half
are over 25. The test set contains 3, 494 samples. We ensure
no overlap with the training sets using an age estimation
model [26]. We also group the samples in each set using a
different number of age groups, which is useful depending
on the experiment. For 9 age groups, we divide them for
< 8, [8 —13), [13,18), [18 — 25), [25 — 35), [35 — 45),
[45 — 55), [65 — 65), and > 65. When using 4 age groups,
we label the ages for children (< 18, 312 samples), young
adults ([18 — 35), 1453 samples), middle aged ([35 — 65),
1284 samples), and senior (> 65, 286 samples).

Color FERET. This dataset [15] contains a total of 11K
images taken from a semi-controlled environment, spanning
994 identities, and annotated with gender and race informa-
tion. We filtered the images containing hard-profile poses
(close to 90° in either direction) and processed them using
the StyleGAN2 FFHQ face cropper to a 1024 x 1024 resolu-
tion. The final set used in this paper contains 994 identities
and has 7.95 K images, averaging 8 images per subject, only
used for training PCA and LDA.

4.2. Latent editing and feature selection

We add a small scalar s steps along the age direction in
W (Eq.1), regenerate each image, and estimate its apparent
age with MobileNetV2. Using the UTKFace test set split
into 9 age groups, we compute the mean estimated age per
group for each s, obtaining a discrete mapping s — age.
We then fit linear and polynomial curves per group to get
a continuous relationship, which lets us pick the scalar s
needed to reach any desired target age (older or younger).

We use two pre-trained face recognition models scor-
ing over 95% accuracy in cross-age benchmarks, IRes-
Net50 [17] and EdgeFace-S [14], to estimate identity
preservation and MobileNetV2 age estimator model [26]
to evaluate apparent age of the face images. We find ver-
ification threshold for both face recognition systems using
the standard benchmark IJB-C [31] dataset. We use face
recognition and age estimator to evaluate the effect of us-
ing linear features (from Linear SVR) compared to feature
selection approaches aimed to preserve identity. We use
UTKFace testing partition to compute the number of cor-
rectly verified age-manipulated samples and their age dif-
ference using the estimated age against the sample’s origi-
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Figure 4. Baseline with linear and polynomial fitting for appar-
ent age change across different age groups compared to the Style-
GAN?2 scalar change, using UTKFace test set. The scalar O de-
notes the original re-projected image. We note the differences in
impact depending on the subject’s age group.

nal age label. With this difference, we calculate an age gain
range, using its mean and one standard deviation, represent-
ing our confidence interval. We calculate the age gain for
the aging/de-aging cases, depending on if we move the la-
tent using a positive scalar to age the resulting face image
or in the negative direction to de-age it. In the feature se-
lection approaches, we set a from Eq. 3 to 1. We varied
B from 0 (no change) to 0.25, 0.50, 0.75, and 1 to find the
value that leads to the largest age gain preserving the iden-
tity. To that end, we compute the age gain for the four age
group labels as described in Section 4.1. We interpolate the
age gain at each rate of correctly verified samples from the
test set of UTKFace, allowing us to examine the age gain
range behavior at different face verification percentages.

5. Results

Using real faces with age labels from UTKFace [37], we
apply StyleGAN2 latent space editing approach (see Sec-
tion 3.1 to compute the parameters for identity preserving
aging and de-aging. Then, we compare different feature
selection strategies presented in Section 3.2. Finally, we
generate fully synthetic dataset of identities using Langevin
sampling [13] and aged/de-aged with our approach.

5.1. Apparent age estimation

Figure 4 illustrates the change in the apparent age for
different scalar s from Eq. 1 computed separately for each
of the 9 age groups (see Section 4.2 for details). The scalar
value 0 corresponds to the re-projected original image, the
negative scalar values correspond to de-aged images, and
the positive scalar values correspond to the aged images.
Figure 4 shows that the re-projection of the original faces
(scalar value 0) appear younger as per the MobileNetV2 age
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Figure 5. Range of estimated age from synthesized images, with
subjects from distinct age groups while preserving identity on 75%
of samples in UTKFace test set. We note the extended range of
values in years with EdgeFace-S when compared to IResNet50, in
both aging and de-aging cases.

estimator [26]. We notice non-linear behaviors when the
face is aged or de-aged, especially, if the original age of
the subject in the older or younger age groups. The figure
also shows polynomial curves fitted to the data, which we
can use to compute more accurate step-by-step increments
when manipulating the age in the latent space.

5.2. Maximum aging ranges while preserving ID

We age/de-age faces with the baseline method and check
identity with two face recognition models at cutoff rate of
75% of samples. We then linearly fit the estimated age of
the original samples and hence find the age-gain for each
age group. This age-gain is shown in Figure 5a as the
highlighted region, within which aged/de-aged faces are
matched with the original images using IResNet50 [17], and
in Figure 5b using EdgeFace-S [14].
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Figure 6. Age gain per number of samples verified when aging faces. We show face verification performance against age gain across dif-
ferent age categories. We highlight the differences at 75% of verified samples from the test set while using EdgeFace-S as face recognition
system. The metrics for MSE, Covariance, and Wasserstein distance are computed using LDA bases for projection and re-construction.

Figure 5a of IResNet50 shows an obvious trend that the
linear baseline approach can age children and de-age se-
niors by many years, while it does not work well in reverse.
Also, middle age catergories can be both ageed and de-
ageed by a large margin. Figure 5b for EdgeFace-S shows
that the apparent age range limits are wider acriss all cate-
gories.For example, EdgeFace can recognize children faces
de-aged to 2 years and aged to 30 years, showing the impact
of the chosen face recognition system.

5.3. Estimated age gain on feature selection methods

Figure 6 shows the performance of linear baseline ap-
proach against different feature selection mechanisms as de-
scribed in Section 3.2. The scores from EdgeFace-S are
sued as reference. The figure shows an expected drop in
the rate of correctly recognized samples as we move in

S55ylo
Ours

Input | 65 y/o 75 y/o

-0.22

FR score

-0.24 -0.23 -0.23 -1.06

Figure 7. Age synthesis to specific target ages of our approach and
SAM [2] The face recognition (FR) score is the cosine distance of
each image to the input using EdgeFace-S embeddings.

FR score

the StyleGAN2 space, with respect to its apparent age (es-
timated) and allow us to compare ID-preservation perfor-
mance of different feature selection strategies. Zoomed
boxes emphasize the performance at 75% of recognized
samples.All the feature selection methods improve over the
baseline in terms of apparent age and the rate of sam-
ples correctly verified. In particular, PCA and LDA us-
ing Covariance show the most improvements over the lin-
ear baseline, with the latter being slightly better. These two
approaches perform similarly, with covariance performing
slightly better over PCA in the children age group, and PCA
being more robust in the senior age group. Figure 7 com-
pares our method and SAM [2], showing better performance
qualitatively and quantitatively across larger age gaps.

5.4. Fully synthetic aged dataset

We publicly release a 20k-ID synthetic dataset' with 10
age versions (Figure 1), generated using Langevin sampling
[13] and our SVR-based latent edit approach from Sec-
tion 3.1.

6. Conclusion

We showed that a simple SVR-based latent direction
and feature selection allows identity-preserving age edits
in StyleGAN2 without re-training generators. Polynomial
scalar—age mappings provide practical target-age control,
and PCA/LDA masks improve the range of ID-preserving
age edits. Future work includes alternative age estimators
and latent navigation strategies.
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