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Abstract

With the growing breakthrough of deep learning-
based face recognition, the development of
lightweight models that achieve high accuracy
while maintaining computational and memory ef-
ficiency has become paramount, especially for
deployment on embedded domains. While Vision
Transformers have shown significant promise re-
sults in various computer vision tasks, their adapt-
ability to resource-constrained devices remains
a significant challenge. This paper introduces
SwiftFaceFormer, a new efficient, and lightweight
family of face recognition models inspired by the
hybrid SwiftFormer architecture. Our proposal
not only retains the representational capacity of
its predecessor but also introduces efficiency im-
provements, enabling enhanced face recognition
performance at a fraction of the computational
cost. We also propose to enhance the verification
performance of our original most lightweight vari-
ant by using a training paradigm based on Knowl-
edge Distillation. Through extensive experiments
on several face benchmarks, the presented Swift-
FaceFormer demonstrates high levels of accuracy
compared to the original SwiftFormer model, and
very competitive results to state-of-the-art deep
face recognition models, providing a suitable so-
lution for real-time, on-device face recognition
applications.
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1. Introduction
In the last decade, deep learning methods based on Convo-
lutional Neural Networks (CNNs) have revolutionized the
face recognition research landscape, achieving impressive
levels of accuracy compared to ”shallow” methods (Wang
& Deng, 2021). However, this increased performance often
relies on a high model complexity, which makes it diffi-
cult to deploy on embedded devices or smartphones with
memory and computational constraints, resulting in find-
ing a suitable trade-off between speed and accuracy to be a
significant challenge.

Designing efficient face recognition solutions, from
lightweight deep learning architectures proposed for com-
mon computer vision tasks, has emerged as a great
promising option. Models such as MobileFaceNet (Chen
et al., 2018), ShuffleFaceNet (Martinez-Diaz et al., 2019),
VarGFaceNet (Yan et al., 2019), MixFaceNets (Boutros
et al., 2021) and GhostFaceNets (Alansari et al., 2023) have
been built from MobileNetV2 (Sandler et al., 2018), Shuf-
fleNetV2 (Ma et al., 2018), VarGNet (Zhang et al., 2019),
MixNets (Tan & Le, 2019) and GhostNets (Han et al., 2020;
Tang et al., 2022), respectively, reaching high levels of recog-
nition accuracy with a low number of parameters and com-
putational complexity.

On the other hand, it has been recently demonstrated that
transformer-based architectures can be incorporated into
face recognition with promising results (Zhong & Deng,
2021). Although these methods are capable of capturing
long-range relations among facial regions, the associated
high computational costs due to the effective use of self-
attention computation have restricted their usage in resource-
limited domains. To address this issue, new hybrid models
(George et al., 2023; He et al., 2023; Li et al., 2023; Su et al.,
2023), that combine the strengths of both lightweight CNNs
and Vision Transformer (ViT), have been introduced for
face recognition, demonstrating that it is possible to meet
real-time deployment in practical applications.

Recently, the SwiftFormer network (Shaker et al., 2023) in-
troduced a consistent hybrid design with an efficient additive
attention mechanism to model the contextual information
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with linear complexity. Experiments on image classifica-
tion, object detection, and segmentation tasks showed that
this model achieves state-of-the-art (SOTA) performance,
obtaining a good trade-off between accuracy and latency.

In this work, we present a new family of efficient and
lightweight hybrid face models, namely SwiftFaceFormer,
including five model variants with different levels of com-
plexity. We adopt SwiftFormer (Shaker et al., 2023) as a
baseline network structure and adapt it for face recognition
applications. Specifically, we leverage a Global Depthwise
Convolution (GDC) layer followed by a convolution layer
of size 1×1 and a batch normalization layer to produce a
compact 512-dimensional feature vector in the embedding
process. In addition to the four variants of the SwiftFormer
model (XS, S, L1, L3), we introduce a new model variant
(XXS), with lower computational complexity in terms of
the number of floating-point operations (FLOPs), number
of parameters, and model size. To enhance the recognition
performance of this compact model, we apply hard knowl-
edge distillation (KD) (Boutros et al., 2022) to train our
SwiftFaceFormer-XXS model to learn similar feature repre-
sentations to the ones learned by a high-performance heavy
network. Experiments on challenging benchmarks demon-
strate the effectiveness and efficiency of SwiftFaceFormer in
comparison to SOTA lightweight CNNs, vision transform-
ers, and hybrid models, showing its potential for deployment
on resource-constrained face recognition applications.

The main contributions of our work are summarized as
follows:

• We introduce a novel lightweight hybrid face archi-
tecture, called SwiftFaceFormer, which extends the
efficient SwiftFormer network to the specific domain
of face recognition for real-time applications. The pro-
posed hybrid network architecture leverages CNN and
ViT capabilities through five model variants of different
complexities.

• We extend the SwiftFaceFormer family of networks
including an extremely-lightweight variant, named
SwiftFaceFormer-XXS, that introduces an Efficient
Convolutional Encoder with variable convolutional
groups per stage. This approach heavily improves
efficiency over the original SwiftFormer Convolutional
Encoder and the rest of the SwiftFormer variants.

• To enhance the interpretation ability and the recogni-
tion performance of the most compact variant of our
SwiftFaceFormer model (XXS), we apply the knowl-
edge distillation paradigm. We provide two ablation
studies about the effect of using different teacher mod-
els to learn feature representations and two different
loss functions.

• We provide extensive experiments and comparisons
with SOTA face models on different datasets including
large-scale face recognition benchmarks such as IJB-B
and IJB-C, showing the advantages of our proposed
models in terms of both accuracy and efficiency.

The paper is organized as follows. Section 2 reviews the
existing lightweight CNNs and ViT models for face recogni-
tion. Section 3 introduces the lightweight hybrid SwiftFace-
Former models tailored for face recognition. Experiments
are presented in Section 4, followed by discussion and con-
clusion in Section 5.

2. Related work
In this section, we summarize existing approaches for de-
veloping face recognition models with low computational
complexity that can be deployed on resource-restricted do-
mains such as embedded devices or smartphones. We also
give an overview of ViT models that have been proposed
for face recognition, including those based on lightweight
face recognition models.

2.1. Lightweight CNNs for face recognition

Designing small and efficient network architectures that
reduce the computational effort in comparison to larger
and more complex CNN models, has become a promising
solution in recent years to achieve a better balance between
speed and accuracy. In particular, for face recognition, the
most common approach has been modifying lightweight
networks originally designed for common computer vision
tasks to the specific case of face recognition.

MobileFaceNet (Chen et al., 2018) and ShuffleFaceNet
(Martinez-Diaz et al., 2019), which are based on Mo-
bileNetV2 (Sandler et al., 2018) and ShuffleNetV2 (Ma
et al., 2018), respectively, replace the Global Average Pool-
ing (GAP) layer for a Global Depth-wise Convolution layer,
and use the Parametric Rectified Linear Unit (PReLU) acti-
vation function instead of the Rectified Linear Unit (ReLU)
function. Moreover, they adopt a fast downsampling strat-
egy at the beginning of the networks, an early dimension-
reduction strategy at the last several convolutional layers,
and a linear 1× 1 convolution layer following a linear GDC
layer as the feature output layer.

VarGFaceNet (Yan et al., 2019) improves the discriminative
ability of VarGNet (Zhang et al., 2019) by using an efficient
variable group convolutional network for lightweight face
recognition. In addition, to improve the interpretation ability
of this lightweight network, a recursive knowledge distilla-
tion strategy is introduced. In a similar way, MixFaceNets
(Boutros et al., 2021) extend the MixConv (Tan & Le, 2019)
block with a channel shuffle operation aiming at increasing
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the discriminative ability. More recently, GhostFaceNets
(Alansari et al., 2023) extends two efficient neural archi-
tectures, GhostNetV1 (Han et al., 2020) and GhostNetV2
(Tang et al., 2022), by replacing the GAP layer and the point-
wise convolution layer with a modified GDC layer. They
employ the PReLU activation function and replace the fully
connected layers in the squeeze and excitation (SE) modules
by convolution layers, to improve the discriminative power
of their method.

Another strategy has been using Neural Architecture Search
(NAS) (Elsken et al., 2019) to automatically create effi-
cient artificial neural networks specifically designed for face
recognition. A family of extremely lightweight face models,
namely PocketNets, was proposed in (Boutros et al., 2022),
aiming at automating the process of designing a neural net-
work that works effectively. The authors also introduce a
novel training paradigm based on knowledge distillation to
ease the challenges caused by the significant gap between
the teacher and student models, reducing the trade-off be-
tween model performance and compactness.

2.2. Vision Transformers for face recognition

In recent years, there has been a growing interest in the use
of Vision Transformers (ViT) for different computer vision
tasks, including face recognition. Face-Transformer (Zhong
& Deng, 2021) was the first attempt to investigate the per-
formance of ViT models in face recognition, by introducing
a Transformer model that uses sliding patches to capture
inter-patch information from faces. Although this method
achieves comparable performance to state-of-the-art CNNs,
it is computationally heavy and unsuitable for low-resource
environments.

Recently, CFormerFaceNet (He et al., 2023) combines a
lightweight CNN face model with ViT. The authors de-
signed a Group Depth-Wise Transpose Attention that used
the CNN’s ability to extract local facial features and the
Transformer’s capability to model global facial features,
with lightweight modifications reducing computation re-
quirements. In MobileFaceFormer (Li et al., 2023), another
hybrid method, both CNN and Transformer branches are
parallelized in a dual branch design, and a bi-directional fea-
ture fusion bridge connecting dual branches is designed to
concurrently retain local facial features and global facial in-
terpretations. A convolutional token initialization method is
proposed at the Transformer branch to perceive long-range
facial information, enhancing feature interpretations. The
CNN branch uses Depth-Wise Separable convolution and
attention mechanisms are adopted to improve local facial
feature extraction before an Attentive Global Depthwise
Convolution (AGDC).

EdgeFace (George et al., 2023) presents a new hybrid model
that adapts the EdgeNeXt architecture (Maaz et al., 2022)

for face recognition and introduces a Low Rank Linear
(LoRaLin) module to further reduce the computation in
linear layers while providing a minimal compromise to the
performance of the network. In addition, a split depth-wise
transpose attention (STDA) encoder is proposed to process
input tensors and encode multi-scale facial features, while
maintaining low computational costs and compact storage
requirements.

HOTformer (Su et al., 2023) is another novel face recog-
nition model based on MobileFaceNets and ViTs that can
effectively generate discriminative face representations by
regional interaction of faces. The authors introduce two co-
operation types of tokens named atomic tokens and holistic
tokens to capture the region relationship of the face. Specif-
ically, atomic tokens are generated by fixed-size patches
to carry the fine-grained core representation, while holis-
tic tokens are generated from adaptively spatial regions to
aggregate information from several facial parts.

3. Approach
In this section, we detail the SwiftFaceFormer architec-
ture specifically tailored for face recognition tasks. This
approach is directly inspired by the SwiftFormer network
(Shaker et al., 2023), which achieves state-of-the-art per-
formance in general-purpose computer vision tasks. Thus,
we first describe the original SwiftFormer architecture, fol-
lowed by the modifications introduced to make it an efficient
and accurate face recognition model.

3.1. SwiftFormer network

The SwiftFormer architecture (Shaker et al., 2023) is a
lightweight hybrid design that combines the strengths of
CNNs and transformers for real-time mobile vision appli-
cations. It builds on EfficientFormer (Li et al., 2022) and
improves the token mixing by using a simple yet effec-
tive Convolutional Encoder. This encoder replaces 3×3
average pooling layers used as a local token mixer by depth-
wise convolutions, without increasing the parameters and
latency. Moreover, SwiftFormer introduces an efficient ad-
ditive attention module in the SwiftFormer Encoder module,
to model the contextual information with linear complex-
ity, that can be incorporated in all stages of the network.
This leads to more consistent learning of local-global rep-
resentations and significantly reduces the computational
complexity.

The original SwiftFormer authors proposed four different
configurations for this architecture, varying in complexity,
named L3, L1, S, and XS. All of these versions use the same
operators although with different depth and width levels.
The depth configuration regulates the number of encoding
operations, while the width level dictates the number of
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channels present in the feature map. In each stage, the
network performs the Convolutional Encoder operations
followed by the SwiftFormer Encoder step. After three
stages of stacking multiple Encoder blocks, depending on
the complexity, the feature map is averaged and its output
is sent to a Linear layer for classification tasks. This output
before the linear layer is a Global Average Pooling (GAP)
operation, common in other general-purpose architectures.

3.2. SwiftFaceFormer architecture

In order to adapt the SwiftFormer architecture to the face
recognition task, we introduce specific refinements to the
original approach. As noted in previous works, the GAP
operator is less effective for the face recognition task. The
reason for this is that the averaging operation weights all
the inputs from the feature map equally, which hinders the
projection of non-linear features and the capacity to extract
discriminative information present in face recognition sce-
narios in the wild. This shortcoming is accentuated when
using the GAP layer output before a Linear layer for final
classification purposes. To mitigate this limitation, an al-
ternative is to use an embedding head including a Batch
Normalization and a Dropout step before the Linear layer
(George et al., 2023).

Recent approaches (Chen et al., 2018; Martinez-Diaz et al.,
2019; Yan et al., 2019) adopt the Global DepthWise Convo-
lution to spatially reduce the feature map size and adjust the
embedding dimension to the final embedding. To extend the
SwiftFormer model to the face recognition scenario and im-
prove its performance, we opt to adjust the output channels
of the final SwiftFormer Encoding stage to the pre-defined
face embedding dimension C using an efficient 1×1 point-
wise convolution. We then employ the GDC layer with a
4×4 kernel size, reducing the spatial dimension from the
SwiftFormer feature map to a vector, and employ another
efficient 1×1 point-wise convolutional operator to output
the final face embedding.

3.3. SwiftFaceFormer-XXS

When assessing SwiftFormer’s efficiency performance, we
noted a heavy load of convolutional operations in the Con-
volutional Encoders from the SwiftFormer architecture. As
such, we analyzed the computation load in each one of the
stages, noting that the earliest stages performed the most
computations due to the larger spatial feature map sizes with
two point-wise convolutional layers. Our approach consists
of converting the last point-wise layer of the Convolutional
Encoder into a grouped point-wise convolution. Our intu-
ition for selecting the last point-wise convolutional layer
for grouped convolutions instead of the first one, was to
retain more input information with full convolutional opera-
tions and reduce the compromise on accuracy when using

the following grouped convolution. We corroborated the
effectiveness of our selection through experimentation.

We propose to employ a descending strategy for the number
of groups at each stage. Using larger group sizes for the
first stages heavily reduces the computation load and pa-
rameter count and leaving deeper stages less compromised
achieves a reasonable balance between efficiency and ac-
curacy. The last stage is left uncompromised with regular
point-wise convolutions (groups g = 1) before the output to
our face embedding head. Figure 1 shows our approach to
this efficient Convolutional Encoder.

Figure 1. Our Efficient Conv. Encoder in SwiftFaceFormer-XXS.
We employ Grouped Point-Wise Convolutions only at the last layer
for maximizing efficiency and mitigating accuracy penalties.

In addition, we reduced the depth regulating the number of
encoding operations in stages 2 to 4, maintaining most of
the operations in the third stage as in the original architec-
ture. This further reduces the computation load with limited
compromises to accuracy. Lastly, we adjusted the width
(channels) of the feature maps starting from 16 in stage one
to 128 in the last stage. We selected 128 as our final channel
dimension as previous work (Martinez-Diaz et al., 2019)
has suggested that 128 suffices for efficiently embedding
facial features. Figure 2 illustrates the modifications for this
efficient approach.

4. Experiments
In this section, we introduce the experimental setup of our
proposed SwiftFaceFormer models and evaluate their recog-
nition performance over several face benchmark datasets.
In addition, we validate the accuracy improvements of the
designed SwiftFaceFormer-XXS architecture through two
ablation studies.

4.1. Datasets

We used the MS1M-RetinaFace dataset (MS1MV3) (Deng
et al., 2019a;b) for fine-tuning our SwiftFaceFormer mod-
els (XXS, XS, S, L1, L3) to the face recognition task. We
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Figure 2. SwiftFaceFormer-XXS overall architecture. Consistent with the original SwiftFormer notation for the stages, the complexity
is expressed as depth d for the number of encoding operations and width w for the number of feature map channels. C denotes the
embedding channel dimension for our face recognition head.

choose to use this particular dataset to allow a fair evalua-
tion of our method with the rest of the state-of-the-art face
recognition benchmarks (Deng et al., 2019b; Kolf et al.,
2023). This dataset is a clean version of the MS-Celeb-1M
dataset (Guo et al., 2016), which contains 5.1 million of
face images collected from 93,431 identities.

To evaluate the effectiveness and robustness of trained Swift-
FaceFormer models, we employed several benchmarks in-
cluding Labeled Faces in the Wild (LFW) (Huang et al.,
2008), Celebrities in Frontal-Profile in the Wild (CFP-FP)
(Sengupta et al., 2016), AgeDB-30 (Moschoglou et al.,
2017), Cross-age LFW (CALFW) (Zheng et al., 2017),
Cross-Pose LFW (CPLFW) (Zheng & Deng, 2018), IARPA
Janus Benchmark-B (IJB-B) (Whitelam et al., 2017) and
IARPA Janus Benchmark-C (IJB-C) (Maze et al., 2018).

4.2. Implementation details

For training our approach, we adopt a Stochastic Gradient
Descent (SGD) optimizer with a batch size of 3×128 to im-
prove training stability. We perform training on three Nvidia
GeForce GTX A6000 GPUs. The learning rate is initial-
ized to 0.05 and decreased by a factor of 10 periodically at
epochs 8, 20, 25, and 30. The momentum parameter is set to
0.9 and weight decay at 5e-4. The parameter-initialization
method for convolutions is Xavier with random sampling
from a Gaussian normal distribution. We use the ArcFace
(Deng et al., 2019a) loss function with an angular margin m
= 0.5, which turned out to be the best for face recognition.
All experiments are implemented on the Pytorch framework.
We adopted the pre-trained weights on ImageNet from the
original SwiftFormer models (Shaker et al., 2023) to initial-
ize our networks to achieve the best performance on face
recognition tasks. During inference, the classification head
of the SwiftFaceFormer models is removed and the resulting
512-D embedding is used for the comparisons.

On our Knowledge-Distillation approach for SwiftFormer-
XXS, we employed hard-sample distillation with two sep-
arate headers, as in (Shaker et al., 2023). For optimizing
the embeddings, we used the Mean Squared Error Loss
scaled to 104 and the Cosine Distance scaled to 64, when
applicable. A second separate header is added to compute
the ArcFace loss. Each loss value is scaled to 0.5 for our
optimization process. For verification, the embedding from
both headers is averaged and used for similarity scoring.

All face images used for both training and testing are de-
tected and aligned by RetinaFace (Deng et al., 2020). We
use five facial landmarks predicted from RetinaFace to gen-
erate the face crops of 112×112, where each pixel (in [0,
255]) is normalized by subtracting 127.5 and then dividing
by 128.

4.3. Results

We now present and discuss our experimental results fo-
cusing on comparisons with the original general-purpose
SwiftFormer architecture and comparing our approach with
state-of-the-art face-recognition models. We also conduct
an ablation study of our Knowledge Distillation approach
for bridging the accuracy gap between SwiftFormer-XXS
and more computationally expensive models.

4.3.1. COMPARISON WITH SWIFTFORMER
ARCHITECTURE.

To show the advantages of our proposed SwiftFaceFormer
architecture for the specific case of face recognition, we
compare it with the original SwiftFormer network. For a
fair comparison, we trained SwiftFormer models (XS, S, L1,
L3) under the same training setting as our SwiftFaceFormer
models. In Table 1, we show the verification accuracy of the
models on LFW, CFP-FP, AgeDB-30, CALFW and CPLFW
datasets. In addition, the number of parameters (Params.)
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Table 1. Comparison of the proposed SwiftFaceFormer with the original SwiftFormer models on popular face recognition benchmarks.

Method LFW CFP-FP AgeDB-30 CALFW CPLFW

SwiftFormer-L3 99.6 96.3 96.6 95.7 89.4
SwiftFaceFormer-L3 (ours) 99.8 97.8 97.6 96.0 90.7

SwiftFormer-L1 99.5 95.4 95.9 95.6 88.9
SwiftFaceFormer-L1 (ours) 99.7 96.7 97.0 95.8 90.1

SwiftFormer-S 99.4 94.3 94.6 94.9 87.7
SwiftFaceFormer-S (ours) 99.6 95.4 95.9 95.3 88.7

SwiftFormer-XS 99.4 95.1 94.9 95.0 88.6
SwiftFaceFormer-XS (ours) 99.6 95.5 96.4 95.4 88.7

and the MFLOPs are given. It can be seen from the table
that, for all variants (XS, S, L1, L3), the proposed Swift-
FaceFormer outperforms the original SwiftFormer models,
maintaining a very similar computational complexity.

To validate our intuition for selecting the second point-wise
convolutional layer as a grouped convolution instead of
the first layer, in our Efficient Convolutional Encoder, we
trained the SwiftFormer-XXS approach on MS1MV3 and
tested face verification on the same datasets as above. Test-
ing both possibilities, we found our approach yields an
average increase of 0.5%, with a more notable verification
accuracy difference of 1.55% and 1.27% on CPLFW and
CFP-FP, respectively.

4.3.2. COMPARISON WITH THE STATE-OF-THE-ART.

Table 2 presents a comparison between our proposed Swift-
FaceFormer models (XXS, XS, S, L1, and L3) and previous
state-of-the-art CNNs, transformer-based, and hybrid mod-
els on seven face-recognition benchmarks. The existing
models are ordered according to the number of parameters
(compactness), showing those with less than 4M parame-
ters. Our most efficient SwiftFaceFormer models are pre-
sented at the end of the table. SwiftFaceFormer-XS and
SwiftFaceFormer-XXS-KD are in with less than 4M. In
the case of HOTformer-Net models (Su et al., 2023), the
number of parameters is unknown, however, the authors
used HOTformer-Net (base) and HOTformer-Net (small)
for comparisons with state-of-the-art lightweight models.

Verification results from this table reveal that our SwiftFace-
Former models obtain comparable performance to SOTA
face recognition models from the literature. Among our
models belonging to the first category, SwiftFaceFormer-L3
achieves the best performance. Although it is the most com-
plex of our models, SwiftFaceFormer-L3 (28M parameters)
achieves comparable results to other deeper CNN and ViTs
models with more than twice number of parameters and
10 times more FLOPs. For example, SwiftFaceFormer-L3
outperformed T2T-ViT, ViT-P10S8, and ViT-P8S8 models

on the challenging CFP-FP and CALFW datasets. Our other
two models, SwiftFaceFormer-L1 (11.8M parameters) and
SwiftFaceFormer-S (6M parameters) perform very simi-
larly to ResNet18-Q8-bit (24M parameters), obtaining even
higher verification scores under pose variations from CFP-
FP and CPLFW. Moreover, the SwiftFaceFormer-S model
reaches the accuracy levels of GhostFaceNetV2-2.

For the second category, the performance of our
SwiftFaceFormer-XS and SwiftFaceFormer-XXS models,
demonstrate promising results on the evaluated benchmarks.
For instance, SwiftFaceFormer-XS obtains as good veri-
fication results as the hybrid EdgeFace-S model and the
lightweight MixFaceNet-S CNN model. Also, it is able
to achieve competitive results with respect to ResNet18-
Q8-bit, which belongs to the first category. The use of
the KD paradigm allows us to enhance the performance of
our compact SwiftFaceFormer-XXS model, offering a good
trade-off between efficiency and accuracy for deploying it
in limited-resource devices.

As it can be appreciated, in general, we have developed
novel hybrid face recognition models that perform well
compared to the state-of-the-art, which demonstrates that
combining the strengths of both lightweight CNNs and trans-
formers makes it possible to reduce the computational re-
quirements for practical applications.

4.4. Ablation study

The knowledge distillation (KD) paradigm enables a student
model to learn from a teacher model, making it a popu-
lar technique for training lightweight models from more
complex ones. Intending to enhance the performance of
our compact model, SwiftFaceFormer-XXS, this section
presents two ablation studies based on the hard simple dis-
tillation method. First, we show the effect of using different
teacher networks for transferring their interpretation capa-
bilities. Then, we evaluate the impact of using different loss
functions during KD training.
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Table 2. Comparison with the state-of-the-art CNN, ViT, and hybrid models on popular face recognition benchmarks. The models are
ordered based on the number of parameters and divided into > 4M and < 4M parameters. IJB-B and IJB-C correspond to the verification
TAR at FAR=1e-4 on the IJB-B and IJB-C datasets
Method Type Params. (M) MFLOPs LFW CFP-FP AgeDB-30 CALFW CPLFW IJB-B IJB-C

ResNet100-ElasticFace (Kolf et al., 2023) CNN 65.2 24211.8 99.8 98.7 98.3 96.2 93.2 95.4 96.7
ResNet100-ArcFace (Kolf et al., 2023) CNN 65.2 24211.8 99.8 98.3 98.2 95.5 92.1 94.2 95.6
T2T-ViT (Zhong & Deng, 2021) ViT 63.5 25400 99.8 96.6 98.1 95.8 93.0 - 95.7
ViT-P10S8 (Zhong & Deng, 2021) ViT 63.3 24800 99.8 96.4 97.8 95.9 92.9 - 96.1
ViT-P12S8 (Zhong & Deng, 2021) ViT 63.3 24800 99.8 96.8 98.1 96.2 93.1 - 96.3
ViT-P8S8 (Zhong & Deng, 2021) ViT 63.2 24800 99.8 96.2 97.8 95.9 92.5 - 96.0
ResNet50-Q8-bit (Kolf et al., 2023) CNN 43.6 - 99.8 97.7 98.0 96.0 92.2 94.3 95.7
ResNet18-Q8-bit (Kolf et al., 2023) CNN 24.0 1810 99.6 94.5 97.0 95.7 89.5 91.6 93.6
GhostFaceNetV2-1 (Alansari et al., 2023) CNN 6.9 272.1 99.9 99.3 98.6 96.1 94.7 96.5 97.8
GhostFaceNetV2-2 (Alansari et al., 2023) CNN 6.8 76.5 99.7 99.3 96.8 95.7 90.2 91.9 93.2
VarGFaceNet (Yan et al., 2019; Kolf et al.,
2023)

CNN 5.0 1022 99.8 98.5 98.2 95.2 88.6 92.9 94.7

GhostFaceNetV1-1 (Alansari et al., 2023;
Kolf et al., 2023)

CNN 4.1 215.7 99.7 96.8 98.0 95.9 91.9 93.1 94.9

GhostFaceNetV1-2 (Alansari et al., 2023;
Kolf et al., 2023)

CNN 4.1 60.3 99.7 93.3 96.9 95.6 90.1 91.3 93.5

HOTformer-Net (large) (Su et al., 2023) Hybrid - 2840 99.8 98.8 98.2 95.9 92.9 95.3 96.6

MixFaceNet-M (Boutros et al., 2021) CNN 3.9 626.1 99.7 - 97.1 - - 91.6 93.4
EdgeFace-S (George et al., 2023) Hybrid 3.7 306.1 99.8 95.8 96.9 95.7 92.6 93.6 95.6
MixFaceNet-S (Boutros et al., 2021) CNN 3.1 451.7 99.6 - 96.6 - - 90.2 92.3
ShuffleFaceNet (Martinez-Diaz et al., 2019;
2021)

CNN 2.6 577.5 99.7 96.3 97.3 95.1 88.5 92.3 94.3

MobileFaceNet (Chen et al., 2018; Martinez-
Diaz et al., 2021)

CNN 2.0 933.3 99.7 96.9 97.6 95.2 89.2 92.8 94.7

EdgeFace-XS (George et al., 2023) Hybrid 1.8 154 99.7 94.4 96.0 95.3 91.8 92.7 94.9
CFormerFaceNet (He et al., 2023) Hybrid 1.7 40.0 99.7 95.1 97.1 95.8 90.2 - -
PocketNetM-128-KD (Boutros et al., 2022) CNN 1.7 1099 99.7 95.1 96.8 95.7 90.0 90.6 92.6
MobileFaceFormer (Li et al., 2023) Hybrid 1.4 - 99.6 96.8 97.7 96.0 98.4 - -
MixFaceNet-XS (Boutros et al., 2021) CNN 1.0 161.9 99.6 - 95.8 - - 88.5 90.7
PocketNetS-128 (Boutros et al., 2022) CNN 0.9 587.1 99.5 93.8 95.9 95.0 88.9 88.3 90.8
PocketNetS-128-KD (Boutros et al., 2022) CNN 0.9 587.1 99.6 94.2 96.1 95.5 89.6 89.4 91.6
HOTformer-Net (base) (Su et al., 2023) Hybrid - 1301 99.7 97.8 97.6 96.0 91.9 93.8 95.5
HOTformer-Net (small) (Su et al., 2023) Hybrid - 765 99.7 96.5 96.9 95.6 91.1 92.5 94.5

SwiftFaceFormer-L3 (ours) Hybrid 28.0 2,015.6 99.8 97.8 97.6 96.0 90.7 92.9 94.7
SwiftFaceFormer-L1 (ours) Hybrid 11.8 804.6 99.7 96.7 97.0 95.8 90.1 91.8 93.8
SwiftFaceFormer-S (ours) Hybrid 6.0 485.2 99.6 96.5 96.8 95.8 90.0 91.6 93.5
SwiftFaceFormer-XS (ours) Hybrid 3.4 293.7 99.6 95.5 96.4 95.4 88.7 90.2 92.3
SwiftFaceFormer-XXS-KD (ours) Hybrid 1.5 64.1 99.4 92.5 94.8 94.8 87.0 87.8 90.3

4.4.1. USING DIFFERENT TEACHER NETWORKS.

We conduct experiments to investigate the effect of dif-
ferent teacher models on SwiftFaceFormer-XXS. We em-
ploy two pretrained and fully converged teacher networks,
ResNet100-ArcFace (Deng et al., 2019a) and our largest
model SwiftFaceFormer-L3, respectively, to measure the
relationship between teachers and student structures. Ta-
ble 3 presents the recognition results on several face
datasets. It can be observed that introducing KD into
the SwiftFaceFormer-XXS training phase improves the
achieved verification performance of SwiftFaceFormer-
XXS (no KD) on all evaluation benchmarks, especially
on the large-scale IJB-B and IJB-C databases. Although
the performance of the teacher models is very similar,
when SwiftFaceFormer-XXS is trained with KD using
SwiftFaceFormer-L3 as the teacher network, the verifica-
tion results are higher. This shows that using a simplified

version of the teacher network as student, reduces the model
capacity gap between a large deep neural network and a
small student neural network.

4.4.2. USING DIFFERENT LOSS FUNCTIONS.

To investigate the effect of loss functions, we train
SwiftFaceFormer-XXS models with KD using Mean Square
Error (MSE) and Cosine (COS) loss functions, respectively.
Comparing the obtained results in Table 4, we can appreciate
that for both loss functions, SwiftFaceFormer-XXS achieves
very similar results. We choose the SwiftFaceFormer-XXS
model trained with the MSE loss function since it offers
more stable results during training.
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Table 3. Results obtained by using KD for training SwiftFaceFormer-XXS model with different teacher models (R100-ArcFace and
SwiftFaceFormer-L3) on popular face recognition benchmarks.

Method LFW CFP-FP AgeDB-30 CALFW CPLFW IJB-B IJB-C

SwiftFaceFormer-XXS (no KD) 99.2 90.9 92.8 94.0 85.7 81.1 82.8

ResNet100-ArcFace (Teacher) 99.8 98.3 98.2 95.5 92.1 94.2 95.6
SwiftFaceFormer-XXS (student) 99.4 92.0 94.9 94.8 86.4 87.3 89.8

SwiftFaceFormer-L3 (Teacher) 99.8 97.8 97.6 96.0 90.7 92.9 94.7
SwiftFaceFormer-XXS (student) 99.4 92.5 94.8 94.8 87.0 87.8 90.3

Table 4. Comparison of the results obtained by using different loss functions (MSE and COS) for KD training of SwiftFaceFormer-XXS
model on popular face recognition benchmarks.

Method LFW CFP-FP AgeDB-30 CALFW CPLFW IJB-B IJB-C

SwiftFaceFormer-L3 (Teacher) 99.8 97.8 97.6 96.0 90.7 92.9 94.7

SwiftFaceFormer-XXS(student)-MSE 99.4 92.5 94.8 94.8 87.0 87.8 90.3
SwiftFaceFormer-XXS(student)-COS 99.5 92.3 95.2 94.8 86.6 87.8 90.3

Table 5. SwiftFaceFormer(SFF) efficiency metrics in terms of la-
tency, FPS throughput, number of parameters, and FLOPs tested
on the Nvidia Jetson Nano platform. Our XXS-KD variant shows
remarkable efficiency performance across all metrics.

SFF Latency FPS Params FLOPs Avg. Acc. per
variant (ms) (M) (M) Acc. latency

L3 36.9 27.1 28.0 2,015.6 95.6 2.6
L1 18.0 55.3 11.8 804.6 95.0 5.3
S 12.8 77.7 6.0 485.2 94.8 7.4
XS 9.1 109.6 3.4 293.7 94.0 10.3
XXS-KD 4.6 215.5 1.5 64.1 92.4 20.1

4.4.3. EFFICIENCY ASSESSMENT.

To support our claim on real-time performance on edge
device hardware, we performed latency experiments on
our proposal. Table 5 presents the latency and single im-
age throughput (FPS) for our SwiftFaceFormer models on
the Nvidia Jetson Nano edge device. We note that our
SwiftFaceFormer-XXS-KD exhibits the lowest latency and
the highest FPS. We also included the Average FR accu-
racy of the benchmarks of our method from Table 2 and
divided it for the inference latency of our methods, cal-
culating an ”Accuracy per latency” score, to better assess
the performance gains of our proposed method. We note a
huge improvement of Accuracy per latency points with the
XXS-KD variant, demonstrating its feasibility for usage on
real-time hardware-constrained deployments.

5. Conclusion
This paper introduces SwiftFaceFormer, a novel family of
hybrid models using Lightweight Face CNNs and Trans-

former architectures specifically tailored for face recogni-
tion tasks by adapting the SwiftFormer model and incor-
porating a Global Depth-Wise Convolution layer, followed
by a 1×1 convolution layer and batch normalization to pro-
duce a compact 512-dimensional feature vector. Our most
notable contribution is the design of our lightest version,
SwiftFaceFormer-XXS, where we utilize grouped point-
wise convolutions in specific sections of SwiftFormer’s Con-
volution Encoders and progressively decrease the groups per
stage for maximizing efficiency. Finally, we demonstrate
that by using Knowledge Distillation for training our XXS
variant, we are able to achieve remarkable balance between
accuracy and efficiency for real-time resource-constrained
environments.
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