Exploring the Effectiveness of Lightweight Architectures for Face Anti-Spoofing
Published in IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops 2023, 2023
Recommended citation: Yoanna Martínez-Díaz, Heydi Méndez-Vázquez, Luis S. Luevano, Miguel Gonzalez-Mendoza. "Exploring the Effectiveness of Lightweight Architectures for Face Anti-Spoofing". Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, 2023, pp. 6391-6401 https://openaccess.thecvf.com/content/CVPR2023W/FAS/html/Martinez-Diaz_Exploring_the_Effectiveness_of_Lightweight_Architectures_for_Face_Anti-Spoofing_CVPRW_2023_paper.html
Detecting spoof faces is crucial in ensuring the robustness of face-based identity recognition and access control systems, as faces can be captured easily without the user’s cooperation in uncontrolled environments. Several deep models have been proposed for this task, achieving high levels of accuracy but at a high computational cost. Considering the very good results obtained by lightweight deep networks on different computer vision tasks, in this work we explore the effectiveness of this kind of architectures for face anti-spoofing. Specifically, we asses the performance of three lightweight face models on two challenging benchmark databases. The conducted experiments indicate that face anti-spoofing solutions based on lightweight face models are able to achieve comparable accuracy results to those obtained by state-of-the-art very deep models, with a significantly lower computational complexity.
Latex citation:
@InProceedings{Martinez-Diaz_2023_CVPR, author = {Mart{\'\i}nez-D{\'\i}az, Yoanna and M\'endez-V\'azquez, Heydi and Luevano, Luis S. and Gonzalez-Mendoza, Miguel}, title = {Exploring the Effectiveness of Lightweight Architectures for Face Anti-Spoofing}, booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops}, month = {June}, year = {2023}, pages = {6391-6401} }